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1. Introduction 
Programmable digital signal processors (PDSPs) are general-purpose microprocessors designed 
specifically for digital signal processing (DSP) applications.  They contain special instructions 
and special architecture supports so as to execute computation-intensive DSP algorithms more 
efficiently.   

PDSPs are designed mainly for embedded DSP applications. As such, the user may never 
realize the existence of a PDSP in an information appliance. Important applications of PDSPs 
include modem, hard drive controller, cellular phone data pump, set-top box, etc.    

The categorization of PDSPs falls between the general-purpose microprocessor and the custom-
designed, dedicated chip set.  The former have the advantage of ease of programming and 
development. However, they often suffer from disappointing performance for DSP applications 
due to overheads incurred in both the architecture and the instruction set. Dedicated chip sets, 
on the other hand, lack the flexibility of programming. The time to market delay due to chip 
development may be longer than the program coding of programmable devices.   
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1.A A Brief Historical Scan of PDSP Development 

1.A.1 1980s to 1990s 

A number of PDSPs appeared in the commercial market in the early 1980s. Intel introduced the 
Intel2920 around 1980 featuring on-chip A/D (analog-to-digital) and D/A  (digital-to-analog) 
converters. Nonetheless, it had no hardware multiplier and was difficult to load program 
parameters into the chip due to the lack of digital interface. In nearly the same time, NEC 
introduced the NEC MPD7720. It is equipped with a hardware multiplier, and is among the first 
to adopt the Harvard architecture with physically separate on-chip data memory and program 
memory.  Texas Instrument introduced the TMS320C10 in 1982.  Similar to the MPD7720, the 
‘C10 adopts the Harvard architecture and has a hardware multiplier. Furthermore, the ‘C10 is 
the first PDSP that can execute instructions from off-chip program memory without 
performance penalty due to off-chip memory input/output (I/O). This feature brought PDSPs 
closer to the microprocessor/microcontroller programming model. In addition, the emphasis on 
development tools and libraries by Texas Instrument led to wide spread applications of PDSP. 
The architectural features of several representative examples of these early PDSP chips are 
summarized in Table 1. 

Table 1. Summary of characteristics of early PDSP 

Model Manu-
facturer 

Year On-chip 
Data 
RAM 

ON-chip 
Data 
ROM 

On-chip 
program 

RAM 

Multiplier 

A100 Inmos  --------- --------- --------- 4,8,12,16 

ADSP2100 Analog 
Device 

1986 --------- --------- --------- 16x16→32 

DSP16 AT&T  512x16 2Kx16 --------- 16x16→32 

DSP32 AT&T 1984 1Kx32 512x32 --------- 32x32→40 

DSP32C AT&T 1988 1Kx32 2Kx32 --------- 32x32→40 

DSP56000 Motorola 1986 512x24 512x24 512x24 24x24→56 

DSP96001 Motorola 1988 1Kx32 1Kx32 544x32 32x32→96 

DSSP-VLSI NTT 1986 512x18 --------- 4Kx18 (18-bit) 
12E6 

Intel2920 Intel 1980 40x25 --------- 192x24 ------ 

LM32900 National. --------- --------- --------- 16x16->32 

MPD7720  NEC 1981 128x16 512x13 512x23 16x16→31 

MSM 6992 OKI. 1986 256x32 --------- 1Kx32 (22-bit) 
16E6 

MSP32 Mitsubishi  256x16 --------- 1Kx16 32x16->32 

MB8764 Fujitsu  256x16 --------- 1Kx24  

NEC77230 NEC 1986 1Kx32 1Kx32 2Kx32 24E8→47E8 

TS68930 Thomson 256x16 512x16 1Kx32 16x16->32 
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TMS32010 TI 1982 144x16 --------- 1.5Kx16 16x16→32 

TMS320C25 TI 1986 288x16 --------- 4Kx16 16x16→32 

TMS320C30 TI 1988 2Kx32 --------- 4Kx32 32x32→32E8 

ZR34161 
VSP  

Zoran  128x32 1Kx16 --------- 16-bit 
vector eng. 

 

In these early PDSPs, DSP-specific instructions such as MAC (multiply-and-accumulate), DELAY 
(delay elements), REPEAT (loop control), and others flow control instructions are devised and 
included in the instruction set so as to improve both programmability and performance. 
Moreover, special address generator units with bit-reversal addressing mode support have been 
incorporated to enable efficient execution of the fast Fourier transform (FFT) algorithm. Due to 
limitation of chip area and transistor count, the on-chip data and program memories are quite 
small in these chips. If the program cannot fit into the on-chip memory, significant performance 
penalty will incur.  

Later, floating-point PDSPs, such as TMS320C30, Motorola DSP96001 appeared in the market.  
With fixed-point arithmetic as in early PDSPs, the dynamic range of the intermediate results 
must be carefully monitored to prevent overflow.  Some reports estimated that as much as one 
third of the instruction cycles in executing PDSP programs are wasted on checking the overflow 
condition of intermediate results. A key advantage of a floating-point arithmetic unit is its 
extensive dynamic range. Later on, some PDSPs also included on-chip DMA  (direct memory 
access) controllers, as well as dedicated DMA bus that allowed concurrent data I/O at the DMA 
unit, and signal processing computation in the CPU. 

1.A.2 1990s to 2000 

In the this decade, a few trends of PDSPs emerged: 

a) Consolidation of PDSP market 

Unlike 1980s where numerous PDSP architectures have been developed, the 1990s is remarked 
by a consolidation of the PDSP market.  Only very few PDSPs are now available in the market. 
Notably, Texas Instrument's TMS320Cxx series captured about 70% of the PDSP market toward 
the end of this decade.  Within this family, the traditional TMS320C10/20 series has evolved 
into TMS320C50 and has become one of the most popular PDSPs. Within this TMS family, 
TMS320C30 was introduced in 1988 and its floating-point arithmetic unit has attracted a 
number of scientific applications.  Other members in this family that are introduced in the 1990s 
include TMS320C40, a multiprocessing PDSP, and TMS320C80, another multiprocessing PDSP 
designed for multimedia (video) applications. TMS320C54xx and TMS320C6xx are the recent 
ones in this family.  Another low cost PDSP that has emerged, as a popular choice is the Analog 
device's SHARC processor.  These modern PDSP architectures will be surveyed in later sections 
of this chapter. 

b) DSP Core Architecture 

As the feature size of digital integrated circuit continues to shrink, more and more transistors 
can be packed into single chip.  As such, it is possible to incorporate peripheral (glue) logics and 
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supporting logic components into the same chip in addition to the PDSP.  This leads to the 
notion of System on (a) Chip (SoC). In designing a SoC system, an existing PDSP core is 
incorporated into the overall system design.  This design may be represented as a VHDL (Very 
High-Speed Integrated Circuit Hardware Description Language)/Verilog core, or a netlist 
format.  A PDSP that is used in this fashion is known as a processor core or a DSP core.   

In the 1990s, many existing popular PDSP designs have been converted into DSP cores so that 
the designers can design new applications using familiar instruction sets, or even existing 
programs. On the other hand, several new PDSP architectures are being developed and licensed 
as DSP cores.  Examples of these DSP cores, that will be reviewed in section 4, include Carmel, 
R.E.A.L., StarCore, and V850.  

c) Multimedia PDSPs 

With the development of international multimedia standards such as JPEG [PeMi93] image 
compression, MPEG video coding [Mitch97], and MP3 audio, there is an expanding market for 
low-cost, dedicated multimedia processors.  Due to the complexity of these standards, it is 
difficult to develop a multimedia processor architecture without any programmability.  Thus, a 
family of multimedia enhanced PDSPs, such as MPACT, TriMedia, TMS320C8x, and DDMP 
have been developed. A key feature of these multimedia PDSPs is that they are equipped with 
various special multimedia related function units, for instance, the YUV to RGB (color 
coordinates) converter, the VLC (variable-length code) entropy encoder/decoder, or the motion 
estimation unit.  In addition, they facilitate direct multimedia signal I/O, bypassing the 
bottleneck of a slow system bus. 

d) Native Signal Processing with Multimedia Extension Instructions 

By native signal processing (NSP), the signal processing tasks are executed in the general-
purpose microprocessor, rather than a separate PDSP coprocessor.  As their speed increases, a 
number of signal processing operations can be performed without additional hardware or 
dedicated chip sets.  In the early 90s, Intel introduced the MMX (MultiMedia eXtension) 
instruction set to the Pentium series microprocessor.  Since modern microprocessors have long 
internal word length of 32, 64 or even extended 128 bits, several 8-bit or 16-bit multimedia data 
samples can be packed into a single internal word to facilitate the so called subword parallelism.  
By processing several data samples in parallel in single instruction, better performance can be 
accomplished while processing especially multimedia streams. 

1.A.3 Hardware Programmable Digital Signal Processors −  FPGA 

An FPGA (Field Programmable Gate Array) is a software configurable hardware device that 
contains (i) substantial amount of uncommitted combinational logic; (ii) pre-implemented flip-
flops; and (iii) programmable interconnections between the combinational logic, flip-flops, and 
the chip I/O pins. The downloaded configuration bit stream programs all the functions of the 
combinational logic, flip-flops, and the interconnections.  While not most efficient, an FPGA can 
be used to accelerate DSP applications in several different ways [Knapp95]: 

1. An FPGA can be used to implement a complete application-specific integrated circuit 
(ASIC) DSP system.  A shortcoming of this approach is that current FPGA technology 
does not yield most efficient hardware implementation. However, FPGA 
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implementation has several key advantages: (a) time to market is short, (b) upgrade to 
new architecture is relatively easy, and (c) low volume production is cost-effective. 

2. An FPGA can act as a coprocessor to a PDSP to accelerate certain specific DSP functions 
that cannot be efficiently implemented using conventional architecture. 

3. Furthermore, an FPGA can be used as a rapid prototyping system to validate the design 
of an ASIC and to facilitate efficient, hardware-in-the-loop debugging. 

1.B Common Characteristics of DSP Computation 

1.B.1 Real-time computation 

PDSPs are often used to implement real-time applications.  For example, in a cellular phone, the 
speed of speech coding must match that of normal conversation.  A typical real-time signal 
processing application has three special characteristics: 

(a) The computation cannot be initiated until the input signal samples are received.  Hence the 
result cannot be pre-computed and stored for later use. 

(b) Results must be obtained before a pre-specified deadline.  If the deadline is violated, the 
quality of services will be dramatically degraded and even render the application useless. 

(c) The program execution often continues for an indefinite duration of time. Hence the total 
number of mathematical operations need to be performed per unit time, known as 
throughput, becomes an important performance indicator.   

1.B.2 Data flow dominant computation 

DSP applications involve stream media data types.  Thus, instead of supporting complex 
control flow (e.g. context switch, multithread processing), a PDSP should be designed to 
streamline data flow manipulation.  For example, special hardware must be designed to 
facilitate efficient input and output of data from PDSP to off-chip memory, to reduce overhead 
involved in accessing arrays of data in various fashions, and to reduce overhead involved in 
execution of multilevel nested DO loops. 

1.B.3 Specialize arithmetic computation 

DSP applications often require special types of arithmetic operations to make computation more 
efficient.  For example, a convolution operation  
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can be realized using a recursion 

  y(n) = 0;  y(n) = y(n) + x(k)*h(n-k), k = 0, 1, 2, …,K-1 

For each k, a multiplication and an addition (accumulation) are to be performed.  This leads to 
the implementation of MAC instruction in many modern PDSPs: 

 R4 ← R1 + R2 * R3 
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Modern PDSPs often contain hardware support of the so-called saturation arithmetic. In 
saturation arithmetic, if the result of computation exceeds the dynamic range, it is clamped to 
either to the maximum or the minimum value.  That is, 9 + 9 = 15 (010012 + 010012 = 011112) in 
2’s complement arithmetic.  Therefore, for applications that saturation arithmetic is applicable, 
there will be no need to check for overflow during the execution.  These special instructions are 
also implemented in hardware. For example, to implement a saturation addition function using 
2’s complement arithmetic without intrinsic function support, we have the following C code 
segment: 

int sadd(int a, int b) { 
int result; 
       result = a + b; 

if (((a ^ b) & 0x80000000) == 0) { 
if ((result ^ a) & 0x80000000) { 

result = (a < 0) ? 0x80000000 : 0x7fffffff; 
} 

} 
return (result); 

} 

However, with a special _sadd intrinsic function support in TMS320C6x[Texas98c], the same 
code segment reduces to this single line:  

result = _sadd(a,b); 

1.B.4 Execution control 

Many DSP algorithms can be formulated as nested, indefinite Do loops. In order to reduce the 
overhead incurred in executing multilevel nested loops, a number of special hardware supports 
are included in PDSPs to streamline the control flow of execution. 

A. Zero-overhead hardware loop − A number of PDSPs contain a special REPEAT 
instruction to support efficient execution of multiple loop nests using dedicated counters 
to keep track of loop indices.   

B. Explicit instruction level parallelism (ILP) − Due to the deterministic data flow of many 
DSP algorithms, ILP can be exploited at compile-time by an optimizing compiler. The 
led to several modern PDSPs to adopt the very long instruction word (VLIW) 
architecture to efficiently utilize the available ILP. 

1.B.5 Low power Operation and Embedded System Design 

A. The majority of applications of PDSPs are embedded systems, such as disk drive 
controller, modem, cellular phone. Thus, many PDSPs are highly integrated and often 
contain multiple data I/O function units, timers, and other function units in a single 
chip packaging. 

B. Power consumption is a key concern in the implementation of embedded systems. Thus, 
PDSPs are often designed to compromise between conflicting requirements of high-
speed data computation, and low power consumption [Bork99].  The specialization of 
certain key functions allows efficient execution of the desired operations using high 
degree of parallelism while holding down the power source voltage and overall clock 
frequency to conserve energy. 
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1.C Common Features of PDSPs 

1.C.1 Harvard Architecture  

A key feature of PDSPs is the adoption of a Harvard memory architecture that contains separate 
program and data memory so as to allow simultaneous instruction fetch and dada access. This 
is different from the conventional Von Neuman architecture where program and data are stored 
in the same memory space. 

1.C.2 Dedicated Address generator  

Address generator allows rapid access of data with complex data arrangement without 
interfering the pipelined execution of main ALUs (arithmetic and logic units).  This is useful for 
situations such as two-dimensional (2D) digital filtering, and motion estimation.  Some address 
generators may include bit-reversal address calculation to support efficient implementation of 
FFT, and circular buffer addressing for the implementation of infinite impulse response (IIR) 
digital filters. 

1.C.3 High bandwidth Memory and I/O controller 

To meet the intensive input and output demands of most signal processing applications, several 
PDSPs have built-in multichannel DMA channels and dedicated DMA buses to handle data I/O 
without interfering CPU operations. To maximize data I/O efficiency, some modern PDSPs 
even include dedicated video and audio codec (coder/decoder) as well as high-speed 
serial/parallel communication port. 

1.C.4 Data Parallelism  

A number of important DSP applications exhibit high degree of data parallelism that can be 
exploited to accelerate the computation. As a result, several parallel processing schemes, SIMD 
(Single Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data) architecture 
have incorporated in the PDSP. For example, many multimedia enhanced instruction sets in 
general-purpose microprocessors (e.g. MMX) employed subword parallelism to speed-up the 
execution. It is basically a SIMD approach.  A number of PDSPs also facilitate MIMD 
implementation by providing multiple interprocessor communication links. 

2. Applications of PDSP 
In this section, both real-world and prototyping applications of PDSPs are surveyed. These 
applications are divided into three categories: communication systems, multimedia, and 
control/data acquisitions.   

2.A Communications systems 
PDSPs have been applied to implement various communication systems. Examples include 
Caller ID (using TMS320C2xx [TexasE97]), cordless handset, and many others. For voice 
communication, an acoustic-echo cancellation based on the normalized least mean square 
(NLMS) algorithm for hands-free wireless system is reported in [Texas97]. Implemented with a 
TMS320C54, this system performs both active-channel and double-talk detection. A 40-MHz 
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TMS320C50 fixed-point processor is used to implement a low bit rate (1.4 Kbps), real-time 
vocoder (voice coder) [YLZ98]. The realization also includes both the decoder and the 
synthesizer. A telephone voice dialer [PaRo96] is implemented with a 16-bit fixed-point 
TMS320C5x PDSP. It is a speaker-independent speech recognition system based on the hidden 
Markov model algorithm.  

Modern PDSPs are also suitable for error correction in digital communication. A special Viterbi 
Shift Left (VSL) instruction is implemented on both the Motorola DSP56300 and the DSP56600 
PDSPs  [Taipa98] to accelerate the Viterbi decoding. Another implementation of the ITU V.32bis 
Viterbi decoding algorithm using a TMS320C62xx is reported by [Yiu98].  Yet another example 
is the implementation of the U.S. digital cellular error-correction coding algorithm, including 
both the tasks of source coding/decoding and ciphering/deciphering, on a TMS320C541 
evaluation module [Chish94].   

Digital baseband signal processing is another important application of PDSPs. A TMS320C25 
DSP-based GMSK (Gaussian Minimum Shift Keying) modem for Mobitex packet radio data 
communication is reported in [Resw96]. In this implementation, transmitted data in packet form 
is level-shifted and Gaussian-filtered digitally within the modem algorithm so that it is ready 
for transmitter baseband interface, either via D/A converter or by direct digital modulation. 
Received data at either baseband or intermediate frequency (IF) band from the radio receiver is 
digitized and processed. Packet synchronization is also handled by the modem, assuring that 
the next layer sees only valid Mobitex packets.  

System prototyping can be accomplished using PDSP due to its low cost and ease 
ofprogramming. A prototype of reverse channel transmitter/receiver for asymmetric digital 
subscriber line (ADSL) algorithm [Gottl94] is implemented using a floating-point DSP 
TMS320C40 chip clocked at 40 MHz. The program consisted of three parts: synchronization, 
training, and decision directed detection.  

Navigation using the Global Positioning System (GPS) has been widely accepted for commercial 
applications such as electronic direction finding. A software-based GPS receiver architecture 
using TMS320C30 processor is described in [KSJ96].  The ‘C30 is in charge of signal processing 
tasks such as correlation, FFT, digital filtering, decimation, demodulation, and Viterbi decoding 
in the tracking loop.  Further investigation on the benefits of using a PDSP in a GPS receiver 
with special emphasis on fast acquisition techniques is reported in [DaVi98]. The GPS L1 band 
signal is down-converted to IF. After A/D conversion, the signal is processed by a dedicated 
hardware in conjunction with algorithms (software) on a PDSP.  Functions that are fixed and 
require high speed processing should be implemented in dedicated hardware.  On the contrary, 
more sophisticated functions that are less time-sensitive can be implemented using PDSPs.  

For defense system application, a linear array of TMS320C30 as the front-end and a 
Transputer processor array as the back-end for programmable radar signal processing are 
developed to support the PDDR  (Point Defense Demonstration Radar) [AEDR91]. The input 
signal is sampled at 10 MHz to 16-bit, complex-valued samples. The PDSP front-end performs 
pulse compression, moving target indication (MTI), and constant false alarm (CFA) rate 
detection.  
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2.B Multimedia  

2.B.1 Audio Signal Processing 

The audible signals cover frequency range from 20 to 20,000 Hz.  PDSP applications to audio 
signal processing can be classified into three categories according to the qualities and audible 
range of the signal [LeTo98]: professional audio products, consumer audio products, and 
computer audio multimedia systems. The DSP algorithms used in particular products are 
summarized in the table below. 

Table 2. DSP algorithms for audio applications 

Professional Audio Products DSP Algorithms Used 

Digital Audio Effects Processors (Reverb, 
Chorus, Flanging, Vibrato Pitch Shifting, Dyn 
Ran. Compression…) 

Delay-Line Modulation/Interpolation, Digital 
Filtering (Comb, FIR…) 

Digital Mixing Consoles Level Detection, 
Volume Control 

Filtering, Digital Amplitude Panning, 

Digital Audio Tape (DAT)  Compression techniques: MPEG, 

Electronic Music Keyboards Physical 
Modeling 

Wavetable/FM synthesis, Sample Playback  

Graphic and Parametric Equalizers  Digital FIR/IIR filters 

Multichannel Digital Audio Recorders  ADPCM, AC-3 

Room Equalization  Filtering 

Speaker Equalization  Filtering 

Consumer Audio Products DSP Algorithms Used 

CD-I  ADPCM, AC-3, MPEG 

CD Players and Recorders  PCM 

Digital Amplifiers/Speakers  Digital Filtering 

Digital Audio Broadcasting Equip.  AC-3, MPEG... 

Digital Graphic Equalizers  Digital Filtering 

Digital Versatile Disk (DVD) Players  AC-3, MPEG... 

Home Theater Systems  AC-3, Dolby ProLogic, THX 

{Surround-Sound Receivers/Tuners}  DTS, MPEG, Hall/Auditorium Effects 

Karaoke  MPEG, audio effects algorithms 

Satellite (DBS) Broadcasting  AC-3, MPEG 

Satellite Receiver Systems  AC-3, 

Computer Audio Multimedia Systems DSP Algorithms used 
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Sound card ADPCM, AC-3, MP3, MIDI, … 

Special purpose head sets 3D Positioning (HRTFs), 

 

MP3 (MPEG-I Layer 3 audio coding) has achieved the status of the most popular audio coding 
algorithm in recent years. The PDSP implementation of MP3 decoder can be found in [RoLu98]. 
On the other hand, most synthesized sounds such as those used in computer gaming are still 
represented in the MIDI [YDG98] format. It can be seen that PDSPs are good candidates for the 
implementation of these audio signal processing algorithms.  

2.B.2 Image/Video processing 

Existing image and video compression standards such as JPEG, and MPEG are based on the 
DCT (discrete cosine transforms) algorithm. The upcoming JPEG 2000 image coding standard 
will also include coding algorithms that are based on the discrete wavelet transform (DWT).  
These standards are often implemented in modern digital cameras and digital camcorders 
where PDSPs will play an important role. An example of using the TMS320C549 to implement a 
digital camera is reported in [IGGL99] where the PDSP can be upgraded later to incorporate the 
upcoming JPEG 2000 standard. 

Low bit rate video coding standards include the ITU H.263+/H.263M and MPEG4 simple 
profile. In  [BRWT99], the potential applications of TMS320C54x family chips to implement low-
power low-bit rate video coding algorithms are discussed. On the other hand, decoding of 
MPEG-II broadcasting grade video sequences using either the TMS320C80 [BMMOP96] chip or 
the TMS320C6201 [CKITT99] chip has been reported.  

Medical imaging has become another fast growing application area of PDSPs. Reported in 
[CJL97] is the use of TMS320C3x as a controller and on-line data processor for processing 
magnetic resonance imaging (MRI). It can perform real-time dynamic imaging such as the 
cardiac imaging, angio-graphy (examination of the blood vessels using x-rays following the 
injection of a radio-opaque substance), and abdominal imaging. Recently, an implementation of 
real-time data acquisition, processing, and display of un-gated cardiac movies at moderate 
video rates of 20 frames per second using PDSPs was reported in [MIEB99]. 

2.B.3 Printing 

Current printer consists of embedded processors to process various formats of page description 
languages (PDL) such as PostScript. In [GaTh99], a PDSP is used to interpret the PDL code, and 
to create a list of elements to be displayed, and to estimate the time needed to render the image. 
Rendering is the process of creating the source pixel map. In this process, a common source 
map is 600x600 pixels per square inch, with four colors for each pixel, and eight bits for each 
color. Compression is used to store the output map while rendering and screening cannot be 
completed within the real-time requirement. This phase involves JPEG compression and matrix 
transformations and interpolations. Depending on the characteristics of the screened image and 
the storage memory available, the compressed image may be either lossless or lossy. 
Decompression of the bit-mapped image occurs in real-time as the compressed image is fed to 
the print engine. The screening process converts the source pixel map into the appropriate 
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output format. Since the process must be repeated for all pixels, the number of calculations is 
enormous for a high-resolution color image especially in real-time.  

2.B.4 SAR Image Processing 

Synthetic aperture radar (SAR) signal processing possesses a significant challenge due to its 
very large computation and data storage requirements. A sensor transmits pulses and receives 
the echoes in a direction approximately perpendicular to the direction of travel.  The problem 
becomes 2D space-variant convolution using range-Doppler algorithm where all the signals and 
coefficients are complex numbers with a precision of at least 16 bits. A heterogeneous 
architecture, vector/scalar architecture is proposed and analyzed [MIC96]. The vector processor 
(using Sharp LH9124 for FFTs) and the scalar processing unit (using 8 SHARC 21060's 
connected in a mesh network) are chosen based on performance, scalability, flexibility, 
development cost and repeat cost evaluation criterion. The design is capable of processing SAR 
data at about 1/10 of the real-time rate. 

2.B.5 Biometric Information Processing 

Handwritten signature verification, one of the biometric authentication techniques is cheap, 
reliable and, non-intrusive to the person being authorized. A DSP Kernel for online verification 
using the TMS32010 with a 200Hz-sampling rate is developed [DDNSZ95].  The authentication 
kernel comprises of personalized table and some general-purpose procedures. This verification 
method can be part of a variety of entrance monitoring and security systems. 

2.C Control and Data acquisition 
As expected, PDSP has found numerous applications in modern control and data acquisition 
applications as well. Several control applications are implemented using Motorola DSP56000 
PDSPs that function as both powerful microcontrollers and as fast digital signal processors. Its 
56-bit accumulator (hence the code name 56xxx) provides 8-bit extension registers in 
conjunction with saturation arithmetic to allow 256 successive consecutive additions without 
the need to check for overflow condition or limit cycles. The output noise power due to round-
off noise of the 24-bit DSP56000/DSP56001 is 65,536 times less than that for 16-bit PDSPs and 
microcontrollers. Design examples include a PID (proportion, integration, and derivative) 
controller [StSo], and an adaptive controller [Rena].    

Another example of DSP system development is the Computer Assisted Dynamic Data 
Monitoring and Analysis System (CADDMAS) project developed for the U.S. Airforce and 
NASA [SKB98]. It is applied to turbine engine stress testing and analysis. The project makes use 
of TMS320C40 for distributed-memory parallel PDSP. An application-specific topology 
interconnects 30 different systems with processor counts varying from 4 to 128 processors. More 
than 300 sensors are used to measure signals with sampling rate in excess of 100 KHz. Based on 
measured signals, the system performs spectral analysis, auto- and cross-correlation, tri-
coherence, etc. 

2.D DSP Applications of Hardware Programmable PDSP 
There are a variety of FPGA implementation examples of specific DSP functions such as: FIR 
(finite impulse response) digital filter [Gosli95], DFT/FFT (Discrete Fourier Transform/Fast 
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Fourier Transform) processor [Dick96], image/video processing [SVMJ95], wireless CDMA 
(Code Division Multiple Access) rake receiver [ShLe2000], and Viterbi decoding [Gosli95].  

16-Tap FIR digital filter − A distributed arithmetic (DA) implementation of a 16-tap finite 
impulse response digital filter has been reported in [Gosli95]. The DA implementation of the 
multiplier uses look up tables (LUTs).  Since the product of two n-bit integers will have 22n 
different results, the size of the LUT increases exponentially with respect to the word length.  
For practical implementation, compromises must be made to trade additional computation time 
for smaller number of LUTs. 

CORDIC based radar processor − The improvement of FPGA CORDIC arithmetic 
implementation is studied further in [Andr98]. The iteration process of CORDIC can be 
unrolled so that each processing element always performs the same iteration. Unrolling the 
processor results in two significant simplifications. First, shift amounts become fixed and can be 
implemented in the wiring. Second, constant values for the angle accumulator are distributed to 
each adder in the angle accumulator chain and can be hardwired instead of requiring storage 
space. The entire processor is reduced to an array of interconnected adder-subtractors, which is 
strictly combinatorial. However, the delay through the resulting circuit can be substantial but 
can be shortened using pipelining without additional hardware cost. A 14-bit, 5-iteration 
pipelined CORDIC processor that fits in half of an Xilinx XC4013E-2 runs at 52 MHz. This 
design is used for high throughput polar to Cartesian coordinate transformations in a radar 
target generator. 

DFT/FFT − An FPGA based systolic DFT array processor architecture is reported [Dick96]. Each 
processing element (PE) contains a CORDIC arithmetic unit, which consists of a series of shift 
and add to avoid the requirement for area consuming multiplier. The timing analyzer xdelay 
determines the maximum clock frequency to be 15.3 MHz implemented on a Xilinx XC4010 
PG191-4 FPGA chip. 

Image/video signal processor − In [SVMJ95], the implementation of an FPGA-augmented low-
complexity, video signal processor was reported. This combination of ASIC and FPGA is 
flexible enough to implement four common algorithms in real-time.  Specifically, for 256×256×8 
pictures, this device is able to achieve the following frame rates: 

Table 3. Achievable frame rate of four different image processing operations 

Algorithms Frames/sec Latency (ms) 

7 x 7 Mask 2D Filter  13.3 75.2 

8 x 8 Block DCT  55.0 18.2 

4 x 4 Block Vector 
Quantization  at 1/2 bpp 

7.4 139.0 

One level wavelet transform  35.7 28.0 

CDMA rake receiver − A CDMA rake receiver for a real-time underwater data communication 
system has been implemented using four Xilinx XC4010 FPGA chips [ShLe 2000] with one 
multiplier on each chip. The final design of each multiplier occupies close to 1000 CLBs 
(configurable logic blocks) and is running at a clock frequency of 1 MHz.  
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Viterbi Decoder − Viterbi decoding is used to achieve maximum likelihood decoding of a binary 
stream of symbols. Since it involves bit-stream operations, it cannot be efficiently implemented 
using word-parallel architecture of general-purpose microprocessors or PDSPs. It has been 
reported [Gosli95] that a Xilinx XC4013E-based FPGA implementation of a Viterbi decoder 
achieves 2.5 times processing speed (135 ns versus 360 ns) compared to a dual PDSP 
implementation of the same algorithm. 

3. Performance measures 
Comparison of the performance between PDSP and general-purpose microprocessors, between 
different PDSPs, as well as between PDSP and dedicated hardware chip sets is a very difficult 
task.  A number of factors contribute to this difficulty: 

1. A set of objective performance metrics is difficult to define for PDSPs.  It is well known that with 
modern superscalar instruction architecture, the usual metrics such as MIPS (millions 
instruction per section), FLOPS (floating-point operations per second) are no longer valid 
metrics to gauge the performance of these microprocessors. Some PDSPs also adopt such 
architecture. Hence a set of appropriate metrics is difficult to define.  

2. PDSPs have fragmented architecture.  Unlike general-purpose microprocessors that have 
converged largely to similar data format (32 bits, or 64 bits architecture), PDSPs have much 
more fragmented architecture in terms of internal or external data format and fixed-point 
versus floating-point operations.  The external memory interface is varied on platform by 
platform basis.  This is due to the fact that most PDSPs are designed for embedded 
applications, and hence cross-platform compatibility is not of a major concern between 
different manufacturers of PDSPs. Furthermore, PDSPs often have specialized hardware to 
accelerate a special type of operations.  Such specialized hardware makes the comparison 
even more difficult. 

3. PDSP applications are often hand-programmed with respect to a particular platform.  The 
performance of cross-platform compilers is still far from realistic.  Hence, it is not 
meaningful to run the same high-level language benchmark program on different PDSP 
platforms.  

Some physical parameters of PDSPs are summarized in the following table. 

Table 4. Physical performance parameters 

Parameters Units 

Maximum clock frequency MHz 

Power consumption Absolute power, watts (W) , power(W)/MIPS 

Execution throughput, 
both peak and sustained 

MIPS, MOPS (million operations/sec), MACS 
(#MAC/sec), MFLOPS  

Operation latency Instruction cycles 

Memory access Clock cycles 

– Bandwidth MB/s (Megabytes per second) 
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– Latency Clock cycle 

– Input/Output No. of ports 

 

Usually peak MIPS, MOPS, MFLOPS, MAC/s, MB/s for particular architecture are just the 
product of instructions, operations, floating-point operations, multiply-accumulate operations, 
memory access in bytes executed in parallel multiplied by maximum clock frequency 
respectively. They can be achieved instantaneously in real applications at certain clock cycle 
and somehow misleading. From a user's perspective, the ultimate performance measure is the 
"execution time" (wall clock time) of individual benchmark.  

Recently, efforts have been made to establish benchmark suites for PDSPs. The proposed 
benchmark suites [BJER98, LPM97] can be categorized into kernel and application levels. They 
can be classified into general DSP and multimedia/graphic.  Since each kernel contributes to 
run time of each application at some certain percentage of run time and each application may 
contain more than single DSP kernel, conducting benchmark tests at both levels gives more 
accurate results than just raw number of some DSP kernels. A number of DSP benchmarks are 
summarized below.  

Table 5. Examples of DSP Benchmarks 

Level Algorithm/Application Names 

Kernel   

• General FFT/IFFT, FIR, IIR, matrix/vector multiply, Viterbi decoding, 
LMS (least mean square) algorithm 

• Multimedia/graphic DCT/IDCT, VLC (variable length code) decoding, SAD  

Application  

• General Radar [BJER98] 

• Multimedia/graphic MediaBench [LPM97], G.722, JPEG, Image [BJER98] 

 

4. Modern PDSP Architectures 
In this section, several modern PDSP architectures will be surveyed. Based on different 
implementation methods, modern PDSPs can be characterized into PDSP chip, PDSP core, 
multimedia PDSPs and NSP instruction set. The following aspects of these implementation 
approaches are summarized in terms of three general sets of characteristics:  

1) program (instruction) execution,  

2) datapath, and  

3) physical implementation.  
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Program execution of PDSP is characterized by processing core (how PDSP achieves 
parallelism), instruction width (bits), maximum number of instructions issued, address 
space of program memory (bits). Its datapath is concerned with number and bit width 
of datapath, pipelining depth, native data type either fixed-point or floating-point, 
number of ALUs, shifters, multipliers, and bit manipulation units as well as their 
corresponding data precision/accuracy, and data/address registers. Finally, physical 
characteristics to be compared include maximum clock frequency, typical operating 
voltage, feature size and implementation technology, and power consumption.   

4.A PDSP Chips 
Some of the recent single-chip PDSPs are summarized in the table 6 below: 

Table 6 Summary of recent single-chip PDSPs 
Family Name DSP16xxx SHARC TMS32054xx TMS32062xx TMS32067xx TriCore 

Model number DSP16210 ADSP21160 TMS320VC5421 TMS320C 6203 TMS320C 6701 TC10GP 

Company  Lucent  Analog Device Texas Texas Texas Infineon 

Processing core VLIW Multiproc./SIMD Multiprocessor VLIW VLIW Superscalar 

Width (bits) 16 & 32 32 16 & 32 256 256 16 & 32 

Maximum Issued 1 4 2 8 8 2 

Instruction 

Address Space (bits) 20 32 - 32 32 32 

Number of Datapath 2 2 2 2 2 3 

Width of Datapath (bits) 16 32 16 32 32 32 

Pipeline Depth 3 3 - 11 17 4 

Datapath 

Data Type Fixed-point  Floating-point  Fixed-point  Fixed-point  Floating-point  Fixed-point  

ALUs 2 (40b) 2 2(40b) 4 4 1 

Shifters 2 2 2(40b) 2 0 - 

Multipliers 2 (16bx16b) 2 2(17bx17b) 2 2 2 (16bx16b) 

Address Generator 2 2 2x2 ALUs ALUs 1 

Functional Units 

Bit Manipulation Unit 1 (40b) Shifter 2(40b) Shifter Shifter 1 

Hardware loop Y Y Y N N Y Program Control 

Nesting levels 2 - 2 2 2 3 

Data Registers 8 2x16 2x2 2x16 2x16 16 

Width (bits) 40 40 40 32 32 32 

Address Registers 21 2x8 2x8 - - 16 

On-chip Storage 

Width (bits) 20 32 - - - 32 

Maximum Clock (MHz)  150 100 - 300 167 66 

Operating Voltage (Volts) 3.0 - 1.8 1.5 1.8 2.5 

Technology  CMOS - CMOS CMOS(15C05) CMOS(18C05) CMOS 

Feature Size (micron) - - - 0.15 0.18 0.35 

Performance 

Power Consumption 294mW@100MHz - 162mW@100MHz - - - 

 



Last revision: 8/25/03 

4.A.1 DSP16xxx  [Bier97]   

The Lucent DSP16xxx achieves ILP from parallel operations encoded in a complex instruction.  
These complex instructions are executed at a maximum rate of one instruction per clock cycle. 
Overheads due to small loops can be eliminated by embedding up to 31 instructions following 
the DO instruction. These embedded instructions can be repeated a specified number of times 
without additional overhead.  Moreover, high instruction/data I/O bandwidth can be achieved 
from a 60-Kword (120-Kbyte) dual-ported on-chip RAM, a dedicated data bus, and a 
multiplexed data/instruction bus.  

4.A.2 TMS320C54xx [Texas99] 

Characterized as a low power PDSP, each TMS320C54xx chip is composed of two independent 
processor cores. Each core has a 40-bit ALU including a 40-bit barrel-shifter and two 40-bit 
accumulators, a 17-bit × 17-bit parallel multiplier coupled with a 40-bit adder to facilitate single-
cycle MAC operation. The C54 series is optimized for low-power communication applications. 
Therefore, it is equipped with a compare, select, and store unit (CSSU) for the add/compare 
selection of the Viterbi operator. Loop/branch overhead is eliminated using instructions such as 
repeat, block-repeat, and conditional store. Interprocessor communication is carried 
out via two internal 8-element first-in-first out (FIFO) register. 

4.A.3 TMS320C62x/C67x [Texas99a, Texas99b, Sesh98] 

TMS320C62x/C67x is a series of fixed-point/floating-point, VLIW-based PDSPs for high 
performance applications. During each clock cycle, a compact instruction is fetched and decoded 
(decompressed) to yield a packet of 8 32-bit instructions that resemble those of conventional 
VLIW architecture. Compiler performs software pipelining, loop unrolling, “If” conversion to a 
predicate execution. Furthermore, a number of special-purpose DSP instructions called intrinsic 
functions can be accessed by programmers from high level language such as C. This feature 
helps ease the programming task and improve the code performance. 

4.A.4 ADSP 21160 SHARC  [Analog99] 

Analog Device’s ADSP21160 SHARC (Super Harvard ARChitecture) contains two PEs, both 
using a 40-bit extended precision floating-point format. Every functional units in each PE is 
connected in parallel, and perform single-cycle operations. Even though its name is abbreviated 
from Harvard architecture, its program memory can store both instruction and data. 
Furthermore, SHARC doubles its data memory bandwidth to allow simultaneous fetch of both 
operands.  

4.A.5 TriCore [TriCore99] 

TriCore TC10GP is a dual-issued superscalar load/store architecture targeted at 
control oriented/DSP oriented applications. Even though its instructions are mixed 
16/32 bits wide for low code density, its datapath is 32 bits wide to accommodate 
high-precision fixed-point and single-precision floating-point numbers. 
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4.B PDSP CORES 
In the table below, we compare the features of four DSP cores reported in the literature:   

Table 7 Summary of PDSP cores 
Family Name Carmel R.E.A.L.  StarCore V850 

Model number DSP 10XX - SC140 NA853C 

Company  Infineon Philips Lucent & Motorola NEC 

Processing core VLIW VLIW VLIW RISC 

Width (bits) 24 & 48 16 & 32 16 16 & 32 

Maximum Issued 1/2 2 6 - 

Instruction 

Address Space (bits) 23 - 32 26 

Number of Datapath 2 2 - - 

Width of Datapath (bits) 16 16 16 16 

Datapath 

Data Type Fixed-point  Fixed-point  Fixed-point  Fixed-point  

ALUs 2 (40b) 4 (16b) 4 1 (32b) 

Shifters 1(40) 1 (40b) ALU (40b) 1 (32b) 

Multipliers 2 (17bx17b) 2 (16x16b) ALU (16bx16b) 1 (32bx32b) 

Address Generator 1 2 2 - 

Functional Units 

Bit Manipulation Unit shifter - ALU Shifter 

Data Registers 16+6 8 16 32 

Width (bits) 16/40 16 40 32 

Address Registers 10 16 24 - 

On-chip Storage 

Width (bits) 16 - 32 - 

Maximum Clock (MHz)  120 85 300 33 

Operating Voltage (Volts) 2.5 2.5 1.5 3.3 

Technology  CMOS - CMOS Titanium-Silicide 

Feature Size (micron) 0.25 0.25 0.13 0.35 

Performance 

Power Consumption 200mW@120MHz - 180mW@300Mhz - 

4.B.1 Carmel [Carmel99,EyBi98]  

One of the distinguishing features of Carmel is its configurable long instruction words (CLIW) 
that are user-defined VLIW like instructions. Each CLIW instruction combines multiple 
predefined instructions into a 144-bit long superinstruction as shown below. 

 
CLIW name (ma1, ma2, ma3, ma4) {           // CLIW reference line 
      MAC1 || ALU1 || MAC2 || ALU2 || MOV1 || MOV2 // CLIW def 
} 

 

Programmers can indicate up to four execution units plus two data moves according to the 
position of individual instruction within the long CLIW instruction. However, up to four 
memory operands can be specified using ma1 through ma4. The assembler stores 48-bit 
reference line in program memory and 96-bit definition in a separate CLIW memory (1024 x 96 
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bits).  In addition to CLIW, a specialized hardware is provided to support Viterbi decoding. 
Nearly all instructions can use predicated execution by two conditional-execution registers  

4.B.2 R.E.A.L. [KLMW98] 

Similarly R.E.A.L. PDSP core allows users to specify a VLIW-like set of application specific 
instructions (ASI) to exploit full parallelism of datapath. Up to 256 ASI instructions can be 
stored in a look-up table. These instructions are activated by a special class of 16 bit instructions 
with 8-bit index field. Each ASI instruction is 96 bits wide and of the predicated form below. 

 
Cond (3) || XACU (11) || YACU (10) || MPY1 (3) || MPY0 (3) || ALUs (62) || DSU (2) || BNU (2) 
ASI [if(asi_cc)]alu3_op,alu2_op,alu1_op,alu0_op,mult1_op][,mult0_op][,dr_op][,xacu_op][,yacu_op]; 
ASI [if(asi_cc)]alu32_op, alu10_op [,mult1_op][,mult0_op][,dr_op][,xacu_op][,yacu_op]; 
ASI [if(asi_cc)]lfsr [,mult1_op][,mult0_op][,xacu_op][,yacu_op]; 
 

Each ASI starts with 3-bit condition code followed by 11-bit X ALU opcode, 10-bit Y ALU, 3-bit 
Multiplier 1 and 0’s opcodes, 62-bit operands, etc. In addition to user-defined VLIW instruction, 
R.E.A.L. allows Application specific eXecution Units (AXU)s to be defined by the customer 
which can be placed anywhere in the datapath or address calculation units. It is targeted 
application is a GSM baseband signal processor. 

4.B.3 StarCore [Star99, WoBi98] 

StarCore is a joint development between Lucent and Motorola for wireless software handset 
configurable terminals (radios) of the third generation wireless systems. It’s expected to operate 
at low voltage down to 0.9 V.  A Fetch set (8-word instruction set) is fetched from memory. 
Program sequencing (PSEQ) unit detects a portion of this set to be executed in parallel and 
dispatched to the appropriate execution unit. This feature is called variable length execution set 
(VLES). StarCore achieves maximum parallelism by allowing multiple address generation and 
data ALUs to execute multiple operations in a single cycle. StarCore is targeted at speech 
coding, synthesis and voice recognition. 

4.B.4 V850 [NEC97] 

The NEC NA853E is a five-stage pipeline RISC (Reduced Instruction Set Computer) 
core suitable for real-time control applications. Not only is instruction set a mixture of 
16 and 32 bits wide but also includes intrinsic instructions for high-level language 
support to increase the efficiency of object code generated by compiler and to reduce 
the program size. 

4.C Multimedia PDSPs 
Multimedia PDSPs are designed specifically for audio/video applications as well as 2D/3D 
graphics.  Some of their common characteristics are 

1. Multimedia input/output (I/O): This may include ports and codec (coder/decoder) for 
video, audio, as well as super VGA graphics signals 
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2. Multimedia-specific functional units such as YUV to RGB converter for video display, 
variable length decoder for digital video decoding, de-scrambler in TriMedia [Philips99a] 
and motion estimation unit for digital video coding/compression in Mpact2 [Kala98, Purc98] 

3. High speed host computer/memory interfaces such as PCI bus and RAMBUS DRAM 
interfaces 

4. Real-time kernel or operating system for MPACT and TriMedia respectively 

5. Support of floating-point and 2D/3D graphic 

Examples of multimedia PDSPs include MPACT, TriMedia, TMS320C8x, and DDMP (Data-
Driven Multimedia Processor) [TMI99]. Their architectural features are summarized in the 
following table. 

Table 8 Summary of Multimedia PDSPs 
Family Name DDMP MPACT TMS320C8x TriMedia 

Model number - MPACT2/6000 TMS320C82 TM1300 

Company  Sharp Chromatic Texas Philips 

Processing Core Dataflow VLIW Multiprocessor VLIW 

Width (bits) 72 81 32 16 to 224 

Maximum Issued 8 2 3 5 

Instruction 

Address Space (bits) - - 32 32 

Width of Datapath (bits) 12 72 32 32 Datapath 

Floating-Point Precision NA Both Single Both 

ALUs 2 2 3 7 

Shifters - 1 3 2 

Multipliers 2 ALUs 1 3 2 

Functional Units 

Address Generators 4 - 3 2 

Data Registers 4 Accumulators 512 48 128 On-chip Storage 

Width (bits) 24 72 32 32 

Maximum Clock (MHz)  120 125 60 166 

Operating Voltage (volts) 2.5 - - 2.5 

Technology  CMOS(4 metal) - CMOS CMOS 

Performance 

Feature Size (micron) 0.25 0.35 - 0.25 

Power Consumption 1.2W@120 MHz - - 3.5W@166MHz 

4.D NSP: Native Signal Processing 
NSP is referred as the use of extended instruction sets in a general-purpose microprocessors to 
process signal processing algorithms.  These are special-purpose instructions that often operate 
in a different manner than the regular instructions.  Specifically, multimedia data formats 
usually are rather short (8 or 16 bits) compared to the 32, 64, 128-bit native register length of 
modern general-purpose microprocessors. Therefore, up to 8 samples may be packed into a 
single word and processed simultaneously to enhance parallelism at the subword level. Most 
NSP instructions operate on both integer (fixed-point) and floating-point numbers except Visual 
Instruction Set (VIS) [Sun97] which supports only fixed-point number.  In general, NSP 
instructions can be classified into the following categories [Lee96]: 
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- Vector arithmetic and logical operations whose results may be vector or scalar. 

- Conditional execution using masking operations. 

- Memory/cache access control such as cache pre-fetch to particular level of cache, 
non-temporal store, etc. as well as masked load/store 

- Data alignment and subword rearrangement i.e. permute, shuffle, etc. 

Most NSP instruction set architectures exhibit the following features: 

1. NSP instructions may share the existing functional units of regular instructions. As such, 
some overhead is involved when switching between NSP instructions and regular 
instructions. However, some NSP instruction sets have separate, exclusive execution units 
as well as register file. 

2. Saturation and/or modulo arithmetic instructions are often implemented in hardware to 
reduce the overhead of dynamic range checking during execution as illustrated in section 
1.B.3.  

3. To exploit subword parallelism, manual or human optimization of NSP based programs is 
often necessary for demanding applications such as image/video processing, and 2D/3D 
graphics. 

Common and distinguishing features of available NSPs are summarized alphabetically as 
follows. 

Table 9. Summary of Native Signal Processing Instruction Sets 

Name AltiVec MAX-2 MDMX MMX/3D Now MMX/SIMD VIS 

Company Motorola HP MIPS AMD Intel Sun 

Instruction set Power PC  PA RISC 2.0 MIPS-V IA32 IA32 SPARC V.9 

Processor MPC7400 PA RISC R10000 K6-2 Pentium III UltraSparc 

Fixed-Point (Integer)  8-bit 16 NA 8 8 8 8 

  16-bit 8 4 4 4 4 4 

  32-bit 4 NA NA 2 2 2 

Floating-point Single 
Precision 

4 2 2 2 4 Na 

Size 32x128b 32x64b 32x64b 8x64b 8x64b 32x64b Fixed-Point Register 
File 

Shared with Dedicated Integer Reg. FP Reg. Dedicated FP Reg. FP Reg. 

Fixed-Point Accumulator Size NA NA 192 NA NA NA 

Unsigned 
Saturation 

Y Y Y Y Y Y Arithmetic 

Modulo Y Y Y Y Y Y 

Inter-Element Arithmetic Multiply-Acc 4 NA 4 2 2 NA 

Fixed-point 
MAC Precision 

32+=(16x16) - 48+=(16x16) 32+=(16x16) 32+=(16x16) - 

Compare Y N Y Y Y Y 

Min/Max Y N Y N Y Y 

 

 

Floating-Point 
Multiply-Acc 

4 single 2 single 2 single 2 single 4 single N 
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 Floating-Point  
Min/Max 

Y N N Y Y N 

Sum Y N N Y Y N Intra-Element Arithmetic 

Floating-Point 
Sum 

Y N N Y N N 

Pack Y Y Y Y Y Y 

Unpack Y Y Y Y Y Y 

Permute Y Y Y - N - 

Type Conversion 

Merge Y Y Y Y Y Y 

VREFP CACHE HINT SELECT FEMMS EMMS EDGE 

VRSQRTFP DEPOSIT  PFRCP DIVPS ARRAY 

SPLAT EXTRACT   PFRSQRT PREFETCH  PSIDT 

Special instructions  

VSEL SHR PAIR  PREFETCH SFENCE BLOCK 
TRANSFER 

NA: Not Available 

Multiply-Acc Precision (bits): acc(bits)+=a(bits) x b(bits) 

4.D.1 AltiVec [Moto98, JJAN99] 

Motorola's AltiVec features a 128-bit vector execution unit operating concurrently with the 
existing integer and floating-point units. There are totally 162 new instructions that can be 
classified into four major classes: 

 

Intra-element arithmetic 
operations  

addition, subtraction, multiply-add, average, minimum, 
maximum, conversion between 32-bit integer and floating-
point 

Intra-element non-arithmetic 
operations  

compare, select, logical, shift, and rotate 

Inter-element arithmetic 
operations  

sum of elements within a single vector register to a separate 
accumulation register 

Intra-element non-arithmetic 
operations  

wide field shift, pack, unpack, merge/interleave, and permute 

AltiVec shows significant amount of efforts to exploit maximum amount of parallelism. 
This results in a 32-entry 128-bit wide register file separating from existing integer and 
floating-point register files. This is different from other NSP architectures that often 
share NSP register file with the existing one. The purpose is to exploit additional 
parallelism through super-scalar dispatch of operations to multiple execution units; or 
through multithreaded execution unit pipelines. Each instruction can specify up to 
three source operands and a single destination operand. Each operand refers to a vector 
register. Target applications of AltiVec include multimedia applications as well as high 
bandwidth data communication, base station processing, IP telephony gateway, multi-
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channel modem, network infrastructure such as Internet router and virtual private 
network server 

4.D.2 MAX 2.0 [Lee96] 

Multimedia Acceleration eXtension (MAX) 2.0 is an extension of HP Precision Architecture 
RISC ISA on PA8000 microprocessor with minimal increased die area concern. Both 8-bit and 
32-bit subwords are not supported due to insufficient precision and insufficient parallelism 
compared to 32-bit single precision floating-point respectively. Although pixels may be input 
and output as 8 bits, using 16-bit subword in intermediate calculations is preferred. The 
additional hardware to support MAX2.0 is minimal, since integer pipeline already has two 
integer ALUs and Shift Merge Units (SMUs) while floating-point pipeline has two FMACs and 
two FDIV, FSQRT units. MAX special instructions are field manipulation instructions are 

 

Cache Hint  For spatial locality 

Extract Selects any field in the source register and place it right-aligned in the target 

Deposit Selects a right-aligned field from source and place it anywhere in the target 

Shift Pair Concatenates and shift 64-bit or rightmost 32-bit contents of tow reg. into 
one result 

4.D.3 MDMX [MIPS97] 

Based on MIPS' experience of designing Geometry Engine, Reality Engine, Maximum Impact, 
Infinite Reality, Nintendo64, O2 and Magic Carpet, the goal of MIPS Digital Media Extension 
(MDMX) is devised to improve performance IEEE-compliant DCT accuracy. As a result. MDMX 
adds four-and eight-element SIMD capabilities for integer arithmetic through the definition of 
these two data types: 

 

Octal Byte 8 unsigned 8-bit integer with 8 unsigned 24-bit accumulator 

Quad Half 4 unsigned 16-bit integer with 4 unsigned 48-bit accumulator 

 

Note that both Octal Byte and Quad Half data type share a 192-bit accumulator which permits 
accumulation of 2N NxN multiples where N is either 8 or 16 bits according to Octal Byte and 
Quad Half respectively. MDMX’s 32 64-bit wide registers and the 8-bit condition code coincide 
with the existing floating-point register file similar to the "Paired-single" precision floating-
point data type. Data is moved between shared floating-point register file and memory with 
floating-point load/store double word and between floating-point/integer registers. In 
addition, MDMX has a unique feature with the vector arithmetic: It is able to operate on specific 
element of a subword as an operand or as constant immediate value. However, reduction 
instruction (sum across) and sum of absolute difference (SAD) are judiciously left out. In 
particular, SAD or L1 norm can be performed as L2 norm without loss of precision using the 
192-bit accumulator. 
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4.D.4 MMX 3D Now! [AMD99, OFW99] 

AMD 3D Now! is an Intel's MMX-like multimedia extension and first implemented in AMD K6-
2 processor. Floating-point instructions are augmented to the integer-based MMX instruction 
set by introducing a new data type, single precision FP to support 2D and 3D graphics. Similar 
to the MMX, applications must determine if the processor supports MMX or not. In addition, 
3DNow! is implemented with a separate flat register file in contrast to the stack based floating-
point/MMX register file. Since no physical transfer of data between FP and multimedia unit 
register files is required, FEMMS (Faster entry/exit of the MMX or floating-point state) is 
included to replace MMX EMMS instruction and to enhance the performance. The register 
operations of all 3DNow! Either the register X or Y execution pipelines can execute floating-
point instructions for a maximum issue and execution rate of two operations per cycle 
[AMD99]. There are no instruction-decode or operation-issue pairing restrictions. All operations 
have an execution latency of 2 cycles and are fully pipelined. As long as two operations do not 
fall into the same category, both operations will start execution without delay. The two 
categories of additional 21 instructions are 

1. PFADD, PFSUB, PFSUBR, PFACC, PFCMPx, PFMIN, PFMAX, PI2FD, PFRCP, and 
PFRSQRT 

2. PFMUL, PFRCPIT1, PFRSQIT1, and PFRCPIT2. 

Normally, all instructions should be properly scheduled so as to avoid delay due to execution 
resource contention or structural hazard by taking dependencies and execution latencies into 
account. 

 

FEMMS is similar to MMX's EMMS but faster since 3D Now does not share MMX 
registers with those of floating-point. 

PFRCP scalar floating-point reciprocal approximation 

PFRSQRT scalar floating-point reciprocal square root approximation 

PREFETCH loads 32 or greater number of bytes either non-temporal or temporal in 
the specified cache level 

 

4.D.5 MMX/SIMD [Intel99] 

MMX (multimedia extension) is Intel’s first native signal processing extension instruction set.  
Subsequently, additional instructions are augmented to the Streaming SIMD Extensions (SSE) 
[Intel99] in Pentium III class processors. SIMD supports 4-way parallelism of 32-bit single 
precision floating-point for 2D and 3D graphics or 32-bit integer for audio processing. These 
new data types are held in a new separate set of eight 128-bit SIMD registers. Unlike MMX 
execution, traditional floating-point instructions can be mixed with Streaming SIMD extensions 
without the need to execute a special instructions such as EMMS. In addition, SIMD features 
explicit SAD instruction and introduces a new operating-system visible state.  

 

EMMS 
(Empty 

must be used to empty the floating-point tag word at the end of an MMX 
routine before calling other routines executing floating-point instructions. 
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(Empty 
MMX State) 

routine before calling other routines executing floating-point instructions. 

DIVPS divides four pairs of packed, single-precision, floating-point operands. 

PREFETCH loads 32 or greater number of bytes either non-temporal or temporal in 
the specified cache level 

SFENCE 
(store fence) 

ensures ordering between routines that produce weakly ordered results 
and routines that consume this data just like multiprocessor weak 
consistency. Non-temporal stores are implicitly weak ordered, no write-
allocate, write combine/collapse so that cache pollution is minimized. 

4.D.6 VIS [Sun97, TOVH96] 

Sun’s VIS (Visual Instruction Set) is the only NSP reviewed here that does not support 
parallelism of floating-point data type. However, the subword data share the floating-point 
register file with floating-point number as indicated in Table 10. Some special instructions in 
VIS are Array, Pdist, and Block transfer. 

 

Array Facilitates 3D texture mapping and volume rendering by computing 
a memory address for data look up based on fixed-point x, y, and z. 
Data are laid out in a block fashion so that points which are near one 
another have their data stored in nearby memory locations. 

Edge Computes a mask used for partial storage at an arbitrarily aligned 
start or stop address typically at boundary pixels. 

Pdist Computes the sum of absolute value of difference of eight pixel pairs. 

Block transfer Transfers 64 bytes of data between memory and registers. 

5. Software Programming Tools for PDSP 

5.A Software Development Tools for Programming PDSP 
Since their introduction more than a decade ago, PDSPs have been incorporated in many high 
performance embedded systems such as modems and graphic acceleration cards.  A unique 
requirement of these applications is that they all demand high quality (machine) code 
generation to achieve the highest performance while minimizing the size of the program to 
conserve premium on-chip memory space.  Often the difference of one or two extra instructions 
implies either a real-time processing constraint may be violated, leaving the code generated 
useless, or additional memory module may be needed, causing significant cost to overrun. 

High-level (programming) languages (HLLs) are attractive to PDSP programmers because they 
hide hardware dependent details, and simplify the task of programming. Unlike assembly 
codes, HLL programs are readable, maintainable and portable to other processors. In the case of 
an object-oriented HLL, such as C++, those programs are also more reliable and reusable. All 
these features contribute to reduce development time and cost.   
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Figure 1.  TMS320C6x Software Development Flow [Texas98a] 

As an example of typical software development for PDSPs, depicted in Figure 1 is the 
TMS320C6x software development flow chart.  There are three possible source programs:  C 
source files, macro source files and linear assembler source files.  The latter sources are both at 
assembly program level. The assembly optimizer assigns registers and uses loop optimization 
to turn linear assembly into highly parallel assembly that takes advantage of software 
pipelining. The assembler translates assembly language source files into machine language 
object files. The machine language is based on common object file format (COFF). Finally, the 
linker combines object files into a single executable object module. As it creates the executable 
module, it performs relocation and resolves external references.  The linker also accepts 
relocatable COFF object files and object libraries as input. 
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To improve the quality of the code generated, C compilers are always equipped with extensive 
optimization options.  Many of these compiler optimization strategies [Lucent99] are based on 
GNU C Compiler (GCC): 

Table 10. Compiler optimization options in DSP16000 series [Lucen99] 

 Optimization Performed Targeted Application 

-O0 Default operation, no optimization C level debug to verify functional correctness 

-O1  Optimize for space Optimize space for control code 

-O2 Optimize for space and speed Optimize space and speed for control code 

-O Equivalent  to –O2  Equivalent  to –O2 

-O3 -O2 plus loop cache support, some 
loop unrolling  

Optimize speed for control and loop code 

-O4  Aggressive optimization with 
software pipeline 

Optimize speed and space for control and loop code 

-Os  Optimize for space Optimize space for control and loop code 

 

Debugger can usually be both simulator and profiler like the C source debugger [Texas98b]. The 
C source debugger is an advanced graphic user interface (GUI) to develop, test, and refine ’C6x 
C programs and assembly language programs. In addition to that, the ’C6x debugger accepts 
executable COFF files as input. It features the following capabilities, that can also be found in 
other PDSP development environments: 

− multilevel debugging, user can debug both C and assembly language code, 

− fully configurable graphical user interface, 

− comprehensive data displays, and 

− dynamic profiling provides a method for collecting execution statistics and immediate 
feedback to identify performance bottlenecks within the code. 



Last revision: 8/25/03 

5.B On-chip Emulation 

 

Figure 2. Typical Debugging System using EOnCE [Star99] 

The presence of the Joint Test Action Group (JTAG) test access module or Enhanced on-chip 
emulation (EOnCE) module interface allows the user to insert the PDSP into a target system 
while retaining debug control.  The EOnCE module is used in PDSP devices to debug 
application software in real-time.  It is a separate on-chip block that allows non-intrusive 
interaction with the core. User can examine the contents of registers, memory or on-chip 
peripherals through the JTAG pins.  Special circuits and dedicated pins on the core are defined, 
to avoid sacrificing user-accessible on-chip resources.  

As applications grow in terms of both size and complexity, the EOnCE provides the user with 
many features, including: 

− breakpoints on data bus values,  

− detection of events, which can cause a number of different activities configured by the 
user, 

− non-destructive access to the core and its peripherals,  

− various means of profiling, and 

− program tracing buffer 

The EOnCE module provides system-level debugging for real-time systems, with the ability to  
keep a running log and trace of the execution of tasks and interrupts, and to debug the 
operation of real-time operating systems (RTOS). 
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5.C Optimizing Compiler and code generation for PDSP 
The PDSP architecture evolves from ad-hoc heterogeneous towards homogeneous resource like 
general-purpose RISC microprocessor. One of the reasons is to make compiler optimization 
techniques less difficult. Classical PDSPs' architecture are characterized by  

− a small number and nonuniform register sets in which certain registers and memory 
blocks are specialized for specific usage,  

− highly irregular datapaths to improve code performance and reduce code size,  

− very specialized functional units, and 

− restricted connectivity and limited addressing to multipartitioned memory.  

Several techniques have been proposed based on a simplified architecture of TMS320C2X/5X, 
e.g. instruction selection and instruction scheduling [YuHu94], register allocation and 
instruction scheduling [LDKTW95]. 

The success of RISC and its derivatives such as the superscalar architecture and the VLIW 
architecture have asserted significant impacts on the evolution of modern PDSP architecture. 
However, code density is a central concern in developing embedded DSP systems. This concern 
leads to the development of new strategies such as code compaction [Carmel99] and user-
defined long instruction word [KLMW98]. With smaller code space in mind, code compaction 
using integer programming [LeMa95] was proposed for applications to PDSPs that offer 
instruction-level parallelism such as VLIW. Later on, an integer programming problem 
formulation for simultaneous instruction selection, compaction and register allocation were 
investigated by [Geboy97]. It can be seen that earlier optimization techniques were focus on the 
optimization of basic code blocks.  Thus, they can be considered as a local optimization 
approach. Recently, the focus has shifted to global optimization issues such as loop unrolling 
and software pipelining. In [StLe99], results of implementing a software pipelining using 
modulo scheduling algorithm on C'6x VLIW DSP have been reported. 

Artificial intelligence (AI) technique such as planning was employed to optimize instruction 
selection and scheduling [YuHu94]. With AI, concurrent instruction selection and scheduling 
yield code comparable to that of hand-written assembly codes by DSP experts. The instruction 
scheduler is a heuristic list based scheduler. Both instruction scheduling and selection involve 
node coverage by pattern matching and node evaluation by heuristic search using means-end-
analysis and hierarchical planning. The efficiency is measured in terms of size and execution 
time of generated assembly code whose size is up to 3.8 times smaller than that of commercial 
compiler. 

Simultaneous instruction scheduling and register allocation for minimum cost based on a 
branch-and-bound algorithm are reported [LDKTW95]. The framework can be generalized to 
accumulator-based machines to optimize accumulator spilling such as the TMS320C40. Their 
uses are likely intended to obtain more compact code.  

Integer linear programming is shown to be effective in compiler optimization recently in 
[LeMa95] and [Geboy97]. The task of local code compaction in VLIW architecture is solved 
under a set of linear constraints such as a sequence of register transfers and maximum time 
budget. Since some DSP algorithms show more data flow and less control flow behavior 
[LeMa95], code compaction exploits parallel register transfers to be scheduled into a single 
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control step resulting in a lower cycle count to satisfy timing constraint. Of course, resource 
conflicts and dependencies as well as encoding restrictions and operations having side effect 
must be taken into consideration. Later effort has integrated instruction selection, compaction 
and register allocation together [Geboy97]. The targeted PDSP is defined using arc mappings 
and later into logical propositions to make it retargetable. These propositions are then translated 
into mathematical constraints to form the optimization model using integer linear 
programming. Code is generated and optimized for minimum code size, maximum 
performance in estimated energy dissipation. 

In modern VLIW PDSP, the architecture features homogeneous functional and storage 
resources enabling global optimization by compiler. Software pipelining is known as one of the 
most popular code scheduling techniques. It exploits the available instruction level parallelism 
in different loop iterations. A software-pipelined loop consists of three components: 

− A prolog: set up the loop initialization 

− A kernel: execute pipelined loop body in steady state 

− An epilog: drain the execution of the loop kernel 

Modulo scheduling takes an innermost loop body and constructs a new schedule. The new 
schedule is equivalent to overlapping loop iterations. The algorithm utilizes data precedence 
graph (DPG) and reservation table to construct permissible schedule of the loop body under the 
available resource constraints. DPG is a directed graph (possibly cyclic) with nodes and edges 
representing operations and data flow dependencies of the original inner loop body. The 
resource requirements for an operation are modeled using reservation table. [StLe99] reports 
result of software pipelining on a set of 40 loop kernels based on C‘6x architecture. However, 
the architectural features that impact performance gain of software pipelining are moderately 
sized register file, constraints on code size, and multiple assignment code. 

6. DSP System Design Methodologies 
Designing modern DSP systems requires more than just programming PDSP or processing 
cores.  Instead, the system's performance must be the utmost performance criterion.  The DSP 
system design methodologies are developed at different levels of abstractions.  At the system 
level, the design scope includes task and data partitioning, and software synthesis/simulation.  
At the architectural level, the focus is on architecture and compiler development.  At the chip 
implementation level, hardware description languages such as VHDL and hardware/software 
co-design methodologies are quite important. 

6.A Application development with existing hardware/processing core 
A software engineering approach is incorporated to assist the development of an application 
using a DSP array processor at Raytheon System Corporation [KeOs98]. Three performance 
measurements are used to gauge the quality of the design:  

- processor throughput rate,  

- memory utilization, and  

- I/O bandwidth utilization.  
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A sensitivity analysis of these performance metrics is performed to examine trade-offs of 
various design approaches. Factors that affect the processor throughput rate include: the quality 
of DSP algorithm formulation, the operation cost in processor cycles, the sustained throughput 
rate to peak throughput efficiency, and the expected speedup when it is upgraded to the next 
generation of PDSP. Regarding the memory utilization, it has been observed that the size of the 
data samples, and the dynamic nature of memory usage patterns are the most two important 
factors. The I/O bandwidth utilization, on the other hand, depends on the algorithm as well as 
the hardware design. Several design tools used to develop the entire system and their factors 
that may degrade the performance during the design process are listed in the table below: 

Table 11. DSP System development tools and factors that may degrade performance 

Tools Factors that may degrade performance 
Code generation – Compiler efficiency 

– Quality of generated assembly code 
– Size of load image 

Instruction level processor simulator – Cycle counts for elementary operation 
Cycle-accurate device level VHDL  
model 

– External memory access time  
– Instruction caching effects 
– Resource contention between processor and 

DMA channels 
 
Rate monotonic analysis (RMA) [LiLa73] is necessary to validate the schedulability of software 
architecture. In general, it has been reported that the following lessons have been learned 
through this design experience: 

− prototype early in the development cycle, 

− ignore processor marketing information – actual throughput is highly dependent on the 
application profile, 

− analyze careful the most frequently executed function - task switching, and 

− take inherent interfaces overhead such as interrupt handling, data packing and 
unpacking into account in estimating the throughput. 

Another example of DSP system development is The Computer Assisted Dynamic Data 
Monitoring and Analysis System (CADDMAS) developed for the U.S. Airforce and NASA 
[SKB98]. Its details have been described earlier in section 2.c. An adaptive approach was 
necessary to allow the structure of the system to adapt to changing external requirement and 
sensor availability. This leads to application of a reconfigurable controller called structurally 
adaptive signal processing, for process control. Unlike parametric adaptation where topology of 
the graph is fixed and coefficients can change over time, a structurally adaptive signal 
processing system can change its computational structure on the fly. Therefore, its control 
functionality can be maintained even in the face of sensor failures, the performance will be 
gracefully degraded but correct control action is still present.  
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6.B Application-driven design - Fine tuning the processing core 
Two reasons contributing to the poor performance of HLL PDSP commercial compilers are first, 
that compilers are developed after a target architecture has been established and second, the 
inability to exploit DSP-specific architectural features in DSP compiler [SCL94]. The following 
application-driven design methodologies are adopted.  

− A DSP architecture and its compiler are developed in parallel,  

− its dynamic statistics is assessed the impact tradeoffs on performance, and 

− an iterative analysis to fine-tune the architecture and compiler. 

The PDSP architecture is based on VLIW. As a result an optimizing C compiler is necessary to 
exploit static instruction-level parallelism as well as DSP-specific hardware features. Those 
hardware features are modulo addressing, low over-head looping, and dual data memory 
banks. Meanwhile, instruction set simulator is developed to gather statistics on the run-time 
behavior of DSP programs. A suite of DSP benchmarks in terms of kernel and application are 
chosen to evaluate the system. The performance success of the compiler is due to the flexibility 
of the model VLIW architecture. The statistics indicate the areas of improvement to be fed back 
for fine-tuning the architecture. However, its drawback is the high instruction-memory 
bandwidth requirements that can be too expensive and impractical to implement.  

As another means of DSP architecture development, machine description language (MDL) has 
been proposed to achieve rapid prototyping at architectural level. Recently, LISA [PHZM99] is 
developed for the generation of bit and cycle accurate models of a PDSP. It includes instruction 
set architecture that enables automatic generation of simulators and assemblers. LISA is 
composed of resource and operation declarations. Resource declaration represents the storage 
objects of the hardware architecture (e.g. registers, memories, pipelines). Declaration 
description collects the description of different properties of the system, i.e. instruction set 
model, the behavioral model, the timing model, and necessary declarations. LISA supports 
cycle-accurate processor models, including constructs to specify pipelines and their 
mechanisms. It’s targeting SIMD, VLIW, and superscalar architectures. Direct support for 
compiled simulation techniques and strong orientation on C programming language are 
contributed in LISA. the Texas Instruments TMS320C6201 DSP, Realized as a real world 
example, is modeled in cycle by cycle basis by only one designer and finished within two 
months.  

 

6.C Reconfigurable Computing: Hw/Sw codesign for a given application 
In the system design process, it has been traditional that decision is made on a subtask-by-
subtask basis to be implemented in either custom hardware or software running on PDSP(s). 
On one hand, custom hardware or ASIC can be customized to particular subtask resulting in 
relatively fast and efficient implementation. ASIC is physically programmed by patterning 
devices (transistors) and metal interconnection prior to fabrication process. Higher throughput 
and lower latency can be achieved with more space dedicated to particular functional units. On 
the other hand, PDSP is programmed later by software resulting in flexible but relatively slow 
and inefficient realization. Temporal or sequential operations can be accomplished by a set of 
instructions to program a processor after its fabrication.  
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Between these two extremes, reconfigurable computing (RC) architecture can be programmed 
to perform any specific function by a set of configuration bits. In other words, RC combines 
temporal programmability with spatial computation in hardware after it is fabricated at low 
overhead. In other words, the hardware/software boundaries can been altered by RC paradigm 
[DeWa99].  

Also known as 90/10 rule of thumb where 90% of runtime is spent on 10% of the program, 
hardware/software partitioning is inspired by the higher percentage of run time of specialized 
computation, the more improvement of cost/performance if it is implemented in hardware and 
the more specialized computation dominate the application the more closely the specialized 
processor should be coupled with host processor. This rule of thumb has been successfully 
applied to floating-point processing unit as well as RC. 

In heterogeneous system approach, RC is combined with a general-purpose processing 
capability of traditional microprocessor. Interface between these two can be either closely or 
loosely coupled depending upon its applications. How frequent RC's functionality should be 
reconfigured dynamically must be determined based on the performance optimality of 
particular hardware/software architecture. 

Existing RC architectures are mostly of the form 1D or 2D array of configurable cells 
interconnected by programmable links. The array communicates with outside world through 
peripheral I/O cells. The architecture can be characterized by its logic capability of each cell at 
different granularity. 

• Fine-grained configurable cell performs simple logic functions with support of more 
complex function such as fast carry chain. 

• Coarse-grained configurable cell performs word parallel arithmetic functions such as 
addition, multiplication, etc. with support of simple bit-level logic functions. 

Either general-purpose computing or DSP application mainly drives the architecture of 
configurable cell either fine-grained or coarse-grained. Its configuration or context is stored 
locally like SRAM-based FPGA. Its implementation is either FPGA-like or custom design 
configurable cell based on current technology and scale of integration. Instead of being off-chip 
and loosely coupled to the host processor, RC is going towards an on-chip coprocessor as the 
technology advances to SOC. 

Table 13 Some Reconfigurable Computing Architectures for DSP Applications 

Fine grained CHAMP [PaGu95], DRLE [Nishi99], Pleiades [AbRa96] 

Coarse grained MATRIX [MiDe96], MorphoSys [LSLB99], REMARC[MiOl98] 

 

Here are some exiting RC architectures for DSP Applications. 

CHAMP [PaGu95] is a system of 8 PEs interconnected in a 32-bit ring topology. Each PE 
consists of 2 Xilinx XC4013 FPGAs, dual-port memory, and 32-bit 38 ports reconfigurable 
crossbar switch between PEs and memory. 

DRLE (Dynamically Reconfigurable Logic Engine) [FFMN99, Nishi99] is capable of real-
time reconfiguration with several layers of configuration tables. An experimental chip is 
composed of 4x12 array of configurable cell. Each cell can realize two different logic operations 
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equivalent to 4-bit input to 1-bit output or 3-bit input to 2-bit output. Up to eight different 
configurations can be locally stored in each cell memory. With 0.25 micron CMOS technology, 
the chip contains 5.1 million transistors in 10x10 mm2 die-area and consumes 500 mW @ 70 
MHz. 

MATRIX [MiDe96] is composed of 2D array of identical 8-bit configurable cells overlaid 
with a configurable network. Each cell consists of 256x8-bit memory, 8-bit ALU and multiplier, 
and reduction control logic. The interconnect network supports 3 ranges of interconnection: 
nearest neighbor, bypass of length four, and global line with pipeline register. The configurable 
cell area is approximated to 29 million λ2. Its cycle time is 10 ns at 0.5 micron CMOS technology. 

MorphoSys [LSLB99] is 2D mesh 8x8 reconfigurable cell array coprocessor. Each cell is 
similar to datapath found in conventional processors consisting of ALU/multiplier, shifter, and 
4-entry register file. Moreover, bit-level application is also supported. Up to 32 contexts can be 
simultaneously resident in context memory. The whole array can be reconfigured in 8 cycles or 
80 ns @ 100 MHz. 

Pleiades [AbRa96] is proposed as heterogeneous system partitioned by control-flow 
computing on microprocessor and data flow computing on RC for future wireless embedded 
device. RC array is composed of satellite (configurable) processors and programmable 
interconnect to main microprocessor. Data-flow driven computing is implemented using global 
asynchronous and local synchronous clocking to reduce overhead. Therefore, operation starts 
only when all input data are ready. 

7. Conclusion 
In this chapter, we briefly surveyed the architecture, application and programming 
methodologies of modern programmable digital signal processors (PDSPs).  With a bit of stretch 
of the definition, we included in this survey the hardware programmable FPGA realization of 
DSP algorithms and the special multimedia extension instructions incorporated in general-
purpose microprocessors to facilitate native signal processing.   We also offered an overview of 
the existing applications of PDSPs. Finally, we summarized current software design 
methodologies and briefly mentioned future trends and open research issues. 
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