
Last revision: 8/25/03

Programmable Digital
Signal Processor (PDSP): A
Survey

Surin Kittitornkun and Yu Hen Hu

University of Wisconsin - Madison
Department of Electrical and Computer Engineering
1415 Engineering Drive
Madison, WI 53706
hu@engr.wisc.edu

1. Introduction
Programmable digital signal processors (PDSPs) are general-purpose microprocessors designed
specifically for digital signal processing (DSP) applications. They contain special instructions
and special architecture supports so as to execute computation-intensive DSP algorithms more
efficiently.

PDSPs are designed mainly for embedded DSP applications. As such, the user may never
realize the existence of a PDSP in an information appliance. Important applications of PDSPs
include modem, hard drive controller, cellular phone data pump, set-top box, etc.

The categorization of PDSPs falls between the general-purpose microprocessor and the custom-
designed, dedicated chip set. The former have the advantage of ease of programming and
development. However, they often suffer from disappointing performance for DSP applications
due to overheads incurred in both the architecture and the instruction set. Dedicated chip sets,
on the other hand, lack the flexibility of programming. The time to market delay due to chip
development may be longer than the program coding of programmable devices.

Last revision: 8/25/03

1.A A Brief Historical Scan of PDSP Development

1.A.1 1980s to 1990s

A number of PDSPs appeared in the commercial market in the early 1980s. Intel introduced the
Intel2920 around 1980 featuring on-chip A/D (analog-to-digital) and D/A (digital-to-analog)
converters. Nonetheless, it had no hardware multiplier and was difficult to load program
parameters into the chip due to the lack of digital interface. In nearly the same time, NEC
introduced the NEC MPD7720. It is equipped with a hardware multiplier, and is among the first
to adopt the Harvard architecture with physically separate on-chip data memory and program
memory. Texas Instrument introduced the TMS320C10 in 1982. Similar to the MPD7720, the
‘C10 adopts the Harvard architecture and has a hardware multiplier. Furthermore, the ‘C10 is
the first PDSP that can execute instructions from off-chip program memory without
performance penalty due to off-chip memory input/output (I/O). This feature brought PDSPs
closer to the microprocessor/microcontroller programming model. In addition, the emphasis on
development tools and libraries by Texas Instrument led to wide spread applications of PDSP.
The architectural features of several representative examples of these early PDSP chips are
summarized in Table 1.

Table 1. Summary of characteristics of early PDSP

Model Manu-
facturer

Year On-chip
Data
RAM

ON-chip
Data
ROM

On-chip
program

RAM

Multiplier

A100 Inmos --------- --------- --------- 4,8,12,16

ADSP2100 Analog
Device

1986 --------- --------- --------- 16x16→32

DSP16 AT&T 512x16 2Kx16 --------- 16x16→32

DSP32 AT&T 1984 1Kx32 512x32 --------- 32x32→40

DSP32C AT&T 1988 1Kx32 2Kx32 --------- 32x32→40

DSP56000 Motorola 1986 512x24 512x24 512x24 24x24→56

DSP96001 Motorola 1988 1Kx32 1Kx32 544x32 32x32→96

DSSP-VLSI NTT 1986 512x18 --------- 4Kx18 (18-bit)
12E6

Intel2920 Intel 1980 40x25 --------- 192x24 ------

LM32900 National. --------- --------- --------- 16x16->32

MPD7720 NEC 1981 128x16 512x13 512x23 16x16→31

MSM 6992 OKI. 1986 256x32 --------- 1Kx32 (22-bit)
16E6

MSP32 Mitsubishi 256x16 --------- 1Kx16 32x16->32

MB8764 Fujitsu 256x16 --------- 1Kx24

NEC77230 NEC 1986 1Kx32 1Kx32 2Kx32 24E8→47E8

TS68930 Thomson 256x16 512x16 1Kx32 16x16->32

Last revision: 8/25/03

TMS32010 TI 1982 144x16 --------- 1.5Kx16 16x16→32

TMS320C25 TI 1986 288x16 --------- 4Kx16 16x16→32

TMS320C30 TI 1988 2Kx32 --------- 4Kx32 32x32→32E8

ZR34161
VSP

Zoran 128x32 1Kx16 --------- 16-bit
vector eng.

In these early PDSPs, DSP-specific instructions such as MAC (multiply-and-accumulate), DELAY
(delay elements), REPEAT (loop control), and others flow control instructions are devised and
included in the instruction set so as to improve both programmability and performance.
Moreover, special address generator units with bit-reversal addressing mode support have been
incorporated to enable efficient execution of the fast Fourier transform (FFT) algorithm. Due to
limitation of chip area and transistor count, the on-chip data and program memories are quite
small in these chips. If the program cannot fit into the on-chip memory, significant performance
penalty will incur.

Later, floating-point PDSPs, such as TMS320C30, Motorola DSP96001 appeared in the market.
With fixed-point arithmetic as in early PDSPs, the dynamic range of the intermediate results
must be carefully monitored to prevent overflow. Some reports estimated that as much as one
third of the instruction cycles in executing PDSP programs are wasted on checking the overflow
condition of intermediate results. A key advantage of a floating-point arithmetic unit is its
extensive dynamic range. Later on, some PDSPs also included on-chip DMA (direct memory
access) controllers, as well as dedicated DMA bus that allowed concurrent data I/O at the DMA
unit, and signal processing computation in the CPU.

1.A.2 1990s to 2000

In the this decade, a few trends of PDSPs emerged:

a) Consolidation of PDSP market

Unlike 1980s where numerous PDSP architectures have been developed, the 1990s is remarked
by a consolidation of the PDSP market. Only very few PDSPs are now available in the market.
Notably, Texas Instrument's TMS320Cxx series captured about 70% of the PDSP market toward
the end of this decade. Within this family, the traditional TMS320C10/20 series has evolved
into TMS320C50 and has become one of the most popular PDSPs. Within this TMS family,
TMS320C30 was introduced in 1988 and its floating-point arithmetic unit has attracted a
number of scientific applications. Other members in this family that are introduced in the 1990s
include TMS320C40, a multiprocessing PDSP, and TMS320C80, another multiprocessing PDSP
designed for multimedia (video) applications. TMS320C54xx and TMS320C6xx are the recent
ones in this family. Another low cost PDSP that has emerged, as a popular choice is the Analog
device's SHARC processor. These modern PDSP architectures will be surveyed in later sections
of this chapter.

b) DSP Core Architecture

As the feature size of digital integrated circuit continues to shrink, more and more transistors
can be packed into single chip. As such, it is possible to incorporate peripheral (glue) logics and

Last revision: 8/25/03

supporting logic components into the same chip in addition to the PDSP. This leads to the
notion of System on (a) Chip (SoC). In designing a SoC system, an existing PDSP core is
incorporated into the overall system design. This design may be represented as a VHDL (Very
High-Speed Integrated Circuit Hardware Description Language)/Verilog core, or a netlist
format. A PDSP that is used in this fashion is known as a processor core or a DSP core.

In the 1990s, many existing popular PDSP designs have been converted into DSP cores so that
the designers can design new applications using familiar instruction sets, or even existing
programs. On the other hand, several new PDSP architectures are being developed and licensed
as DSP cores. Examples of these DSP cores, that will be reviewed in section 4, include Carmel,
R.E.A.L., StarCore, and V850.

c) Multimedia PDSPs

With the development of international multimedia standards such as JPEG [PeMi93] image
compression, MPEG video coding [Mitch97], and MP3 audio, there is an expanding market for
low-cost, dedicated multimedia processors. Due to the complexity of these standards, it is
difficult to develop a multimedia processor architecture without any programmability. Thus, a
family of multimedia enhanced PDSPs, such as MPACT, TriMedia, TMS320C8x, and DDMP
have been developed. A key feature of these multimedia PDSPs is that they are equipped with
various special multimedia related function units, for instance, the YUV to RGB (color
coordinates) converter, the VLC (variable-length code) entropy encoder/decoder, or the motion
estimation unit. In addition, they facilitate direct multimedia signal I/O, bypassing the
bottleneck of a slow system bus.

d) Native Signal Processing with Multimedia Extension Instructions

By native signal processing (NSP), the signal processing tasks are executed in the general-
purpose microprocessor, rather than a separate PDSP coprocessor. As their speed increases, a
number of signal processing operations can be performed without additional hardware or
dedicated chip sets. In the early 90s, Intel introduced the MMX (MultiMedia eXtension)
instruction set to the Pentium series microprocessor. Since modern microprocessors have long
internal word length of 32, 64 or even extended 128 bits, several 8-bit or 16-bit multimedia data
samples can be packed into a single internal word to facilitate the so called subword parallelism.
By processing several data samples in parallel in single instruction, better performance can be
accomplished while processing especially multimedia streams.

1.A.3 Hardware Programmable Digital Signal Processors − FPGA

An FPGA (Field Programmable Gate Array) is a software configurable hardware device that
contains (i) substantial amount of uncommitted combinational logic; (ii) pre-implemented flip-
flops; and (iii) programmable interconnections between the combinational logic, flip-flops, and
the chip I/O pins. The downloaded configuration bit stream programs all the functions of the
combinational logic, flip-flops, and the interconnections. While not most efficient, an FPGA can
be used to accelerate DSP applications in several different ways [Knapp95]:

1. An FPGA can be used to implement a complete application-specific integrated circuit
(ASIC) DSP system. A shortcoming of this approach is that current FPGA technology
does not yield most efficient hardware implementation. However, FPGA

Last revision: 8/25/03

implementation has several key advantages: (a) time to market is short, (b) upgrade to
new architecture is relatively easy, and (c) low volume production is cost-effective.

2. An FPGA can act as a coprocessor to a PDSP to accelerate certain specific DSP functions
that cannot be efficiently implemented using conventional architecture.

3. Furthermore, an FPGA can be used as a rapid prototyping system to validate the design
of an ASIC and to facilitate efficient, hardware-in-the-loop debugging.

1.B Common Characteristics of DSP Computation

1.B.1 Real-time computation

PDSPs are often used to implement real-time applications. For example, in a cellular phone, the
speed of speech coding must match that of normal conversation. A typical real-time signal
processing application has three special characteristics:

(a) The computation cannot be initiated until the input signal samples are received. Hence the
result cannot be pre-computed and stored for later use.

(b) Results must be obtained before a pre-specified deadline. If the deadline is violated, the
quality of services will be dramatically degraded and even render the application useless.

(c) The program execution often continues for an indefinite duration of time. Hence the total
number of mathematical operations need to be performed per unit time, known as
throughput, becomes an important performance indicator.

1.B.2 Data flow dominant computation

DSP applications involve stream media data types. Thus, instead of supporting complex
control flow (e.g. context switch, multithread processing), a PDSP should be designed to
streamline data flow manipulation. For example, special hardware must be designed to
facilitate efficient input and output of data from PDSP to off-chip memory, to reduce overhead
involved in accessing arrays of data in various fashions, and to reduce overhead involved in
execution of multilevel nested DO loops.

1.B.3 Specialize arithmetic computation

DSP applications often require special types of arithmetic operations to make computation more
efficient. For example, a convolution operation

 ∑
−

=

−=
1

0

)()()(
K

k

knhkxny

can be realized using a recursion

 y(n) = 0; y(n) = y(n) + x(k)*h(n-k), k = 0, 1, 2, …,K-1

For each k, a multiplication and an addition (accumulation) are to be performed. This leads to
the implementation of MAC instruction in many modern PDSPs:

 R4 ← R1 + R2 * R3

Last revision: 8/25/03

Modern PDSPs often contain hardware support of the so-called saturation arithmetic. In
saturation arithmetic, if the result of computation exceeds the dynamic range, it is clamped to
either to the maximum or the minimum value. That is, 9 + 9 = 15 (010012 + 010012 = 011112) in
2’s complement arithmetic. Therefore, for applications that saturation arithmetic is applicable,
there will be no need to check for overflow during the execution. These special instructions are
also implemented in hardware. For example, to implement a saturation addition function using
2’s complement arithmetic without intrinsic function support, we have the following C code
segment:

int sadd(int a, int b) {
int result;
 result = a + b;

if (((a ^ b) & 0x80000000) == 0) {
if ((result ^ a) & 0x80000000) {

result = (a < 0) ? 0x80000000 : 0x7fffffff;
}

}
return (result);

}

However, with a special _sadd intrinsic function support in TMS320C6x[Texas98c], the same
code segment reduces to this single line:

result = _sadd(a,b);

1.B.4 Execution control

Many DSP algorithms can be formulated as nested, indefinite Do loops. In order to reduce the
overhead incurred in executing multilevel nested loops, a number of special hardware supports
are included in PDSPs to streamline the control flow of execution.

A. Zero-overhead hardware loop − A number of PDSPs contain a special REPEAT
instruction to support efficient execution of multiple loop nests using dedicated counters
to keep track of loop indices.

B. Explicit instruction level parallelism (ILP) − Due to the deterministic data flow of many
DSP algorithms, ILP can be exploited at compile-time by an optimizing compiler. The
led to several modern PDSPs to adopt the very long instruction word (VLIW)
architecture to efficiently utilize the available ILP.

1.B.5 Low power Operation and Embedded System Design

A. The majority of applications of PDSPs are embedded systems, such as disk drive
controller, modem, cellular phone. Thus, many PDSPs are highly integrated and often
contain multiple data I/O function units, timers, and other function units in a single
chip packaging.

B. Power consumption is a key concern in the implementation of embedded systems. Thus,
PDSPs are often designed to compromise between conflicting requirements of high-
speed data computation, and low power consumption [Bork99]. The specialization of
certain key functions allows efficient execution of the desired operations using high
degree of parallelism while holding down the power source voltage and overall clock
frequency to conserve energy.

Last revision: 8/25/03

1.C Common Features of PDSPs

1.C.1 Harvard Architecture

A key feature of PDSPs is the adoption of a Harvard memory architecture that contains separate
program and data memory so as to allow simultaneous instruction fetch and dada access. This
is different from the conventional Von Neuman architecture where program and data are stored
in the same memory space.

1.C.2 Dedicated Address generator

Address generator allows rapid access of data with complex data arrangement without
interfering the pipelined execution of main ALUs (arithmetic and logic units). This is useful for
situations such as two-dimensional (2D) digital filtering, and motion estimation. Some address
generators may include bit-reversal address calculation to support efficient implementation of
FFT, and circular buffer addressing for the implementation of infinite impulse response (IIR)
digital filters.

1.C.3 High bandwidth Memory and I/O controller

To meet the intensive input and output demands of most signal processing applications, several
PDSPs have built-in multichannel DMA channels and dedicated DMA buses to handle data I/O
without interfering CPU operations. To maximize data I/O efficiency, some modern PDSPs
even include dedicated video and audio codec (coder/decoder) as well as high-speed
serial/parallel communication port.

1.C.4 Data Parallelism

A number of important DSP applications exhibit high degree of data parallelism that can be
exploited to accelerate the computation. As a result, several parallel processing schemes, SIMD
(Single Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data) architecture
have incorporated in the PDSP. For example, many multimedia enhanced instruction sets in
general-purpose microprocessors (e.g. MMX) employed subword parallelism to speed-up the
execution. It is basically a SIMD approach. A number of PDSPs also facilitate MIMD
implementation by providing multiple interprocessor communication links.

2. Applications of PDSP
In this section, both real-world and prototyping applications of PDSPs are surveyed. These
applications are divided into three categories: communication systems, multimedia, and
control/data acquisitions.

2.A Communications systems
PDSPs have been applied to implement various communication systems. Examples include
Caller ID (using TMS320C2xx [TexasE97]), cordless handset, and many others. For voice
communication, an acoustic-echo cancellation based on the normalized least mean square
(NLMS) algorithm for hands-free wireless system is reported in [Texas97]. Implemented with a
TMS320C54, this system performs both active-channel and double-talk detection. A 40-MHz

Last revision: 8/25/03

TMS320C50 fixed-point processor is used to implement a low bit rate (1.4 Kbps), real-time
vocoder (voice coder) [YLZ98]. The realization also includes both the decoder and the
synthesizer. A telephone voice dialer [PaRo96] is implemented with a 16-bit fixed-point
TMS320C5x PDSP. It is a speaker-independent speech recognition system based on the hidden
Markov model algorithm.

Modern PDSPs are also suitable for error correction in digital communication. A special Viterbi
Shift Left (VSL) instruction is implemented on both the Motorola DSP56300 and the DSP56600
PDSPs [Taipa98] to accelerate the Viterbi decoding. Another implementation of the ITU V.32bis
Viterbi decoding algorithm using a TMS320C62xx is reported by [Yiu98]. Yet another example
is the implementation of the U.S. digital cellular error-correction coding algorithm, including
both the tasks of source coding/decoding and ciphering/deciphering, on a TMS320C541
evaluation module [Chish94].

Digital baseband signal processing is another important application of PDSPs. A TMS320C25
DSP-based GMSK (Gaussian Minimum Shift Keying) modem for Mobitex packet radio data
communication is reported in [Resw96]. In this implementation, transmitted data in packet form
is level-shifted and Gaussian-filtered digitally within the modem algorithm so that it is ready
for transmitter baseband interface, either via D/A converter or by direct digital modulation.
Received data at either baseband or intermediate frequency (IF) band from the radio receiver is
digitized and processed. Packet synchronization is also handled by the modem, assuring that
the next layer sees only valid Mobitex packets.

System prototyping can be accomplished using PDSP due to its low cost and ease
ofprogramming. A prototype of reverse channel transmitter/receiver for asymmetric digital
subscriber line (ADSL) algorithm [Gottl94] is implemented using a floating-point DSP
TMS320C40 chip clocked at 40 MHz. The program consisted of three parts: synchronization,
training, and decision directed detection.

Navigation using the Global Positioning System (GPS) has been widely accepted for commercial
applications such as electronic direction finding. A software-based GPS receiver architecture
using TMS320C30 processor is described in [KSJ96]. The ‘C30 is in charge of signal processing
tasks such as correlation, FFT, digital filtering, decimation, demodulation, and Viterbi decoding
in the tracking loop. Further investigation on the benefits of using a PDSP in a GPS receiver
with special emphasis on fast acquisition techniques is reported in [DaVi98]. The GPS L1 band
signal is down-converted to IF. After A/D conversion, the signal is processed by a dedicated
hardware in conjunction with algorithms (software) on a PDSP. Functions that are fixed and
require high speed processing should be implemented in dedicated hardware. On the contrary,
more sophisticated functions that are less time-sensitive can be implemented using PDSPs.

For defense system application, a linear array of TMS320C30 as the front-end and a
Transputer processor array as the back-end for programmable radar signal processing are
developed to support the PDDR (Point Defense Demonstration Radar) [AEDR91]. The input
signal is sampled at 10 MHz to 16-bit, complex-valued samples. The PDSP front-end performs
pulse compression, moving target indication (MTI), and constant false alarm (CFA) rate
detection.

Last revision: 8/25/03

2.B Multimedia

2.B.1 Audio Signal Processing

The audible signals cover frequency range from 20 to 20,000 Hz. PDSP applications to audio
signal processing can be classified into three categories according to the qualities and audible
range of the signal [LeTo98]: professional audio products, consumer audio products, and
computer audio multimedia systems. The DSP algorithms used in particular products are
summarized in the table below.

Table 2. DSP algorithms for audio applications

Professional Audio Products DSP Algorithms Used

Digital Audio Effects Processors (Reverb,
Chorus, Flanging, Vibrato Pitch Shifting, Dyn
Ran. Compression…)

Delay-Line Modulation/Interpolation, Digital
Filtering (Comb, FIR…)

Digital Mixing Consoles Level Detection,
Volume Control

Filtering, Digital Amplitude Panning,

Digital Audio Tape (DAT) Compression techniques: MPEG,

Electronic Music Keyboards Physical
Modeling

Wavetable/FM synthesis, Sample Playback

Graphic and Parametric Equalizers Digital FIR/IIR filters

Multichannel Digital Audio Recorders ADPCM, AC-3

Room Equalization Filtering

Speaker Equalization Filtering

Consumer Audio Products DSP Algorithms Used

CD-I ADPCM, AC-3, MPEG

CD Players and Recorders PCM

Digital Amplifiers/Speakers Digital Filtering

Digital Audio Broadcasting Equip. AC-3, MPEG...

Digital Graphic Equalizers Digital Filtering

Digital Versatile Disk (DVD) Players AC-3, MPEG...

Home Theater Systems AC-3, Dolby ProLogic, THX

{Surround-Sound Receivers/Tuners} DTS, MPEG, Hall/Auditorium Effects

Karaoke MPEG, audio effects algorithms

Satellite (DBS) Broadcasting AC-3, MPEG

Satellite Receiver Systems AC-3,

Computer Audio Multimedia Systems DSP Algorithms used

Last revision: 8/25/03

Sound card ADPCM, AC-3, MP3, MIDI, …

Special purpose head sets 3D Positioning (HRTFs),

MP3 (MPEG-I Layer 3 audio coding) has achieved the status of the most popular audio coding
algorithm in recent years. The PDSP implementation of MP3 decoder can be found in [RoLu98].
On the other hand, most synthesized sounds such as those used in computer gaming are still
represented in the MIDI [YDG98] format. It can be seen that PDSPs are good candidates for the
implementation of these audio signal processing algorithms.

2.B.2 Image/Video processing

Existing image and video compression standards such as JPEG, and MPEG are based on the
DCT (discrete cosine transforms) algorithm. The upcoming JPEG 2000 image coding standard
will also include coding algorithms that are based on the discrete wavelet transform (DWT).
These standards are often implemented in modern digital cameras and digital camcorders
where PDSPs will play an important role. An example of using the TMS320C549 to implement a
digital camera is reported in [IGGL99] where the PDSP can be upgraded later to incorporate the
upcoming JPEG 2000 standard.

Low bit rate video coding standards include the ITU H.263+/H.263M and MPEG4 simple
profile. In [BRWT99], the potential applications of TMS320C54x family chips to implement low-
power low-bit rate video coding algorithms are discussed. On the other hand, decoding of
MPEG-II broadcasting grade video sequences using either the TMS320C80 [BMMOP96] chip or
the TMS320C6201 [CKITT99] chip has been reported.

Medical imaging has become another fast growing application area of PDSPs. Reported in
[CJL97] is the use of TMS320C3x as a controller and on-line data processor for processing
magnetic resonance imaging (MRI). It can perform real-time dynamic imaging such as the
cardiac imaging, angio-graphy (examination of the blood vessels using x-rays following the
injection of a radio-opaque substance), and abdominal imaging. Recently, an implementation of
real-time data acquisition, processing, and display of un-gated cardiac movies at moderate
video rates of 20 frames per second using PDSPs was reported in [MIEB99].

2.B.3 Printing

Current printer consists of embedded processors to process various formats of page description
languages (PDL) such as PostScript. In [GaTh99], a PDSP is used to interpret the PDL code, and
to create a list of elements to be displayed, and to estimate the time needed to render the image.
Rendering is the process of creating the source pixel map. In this process, a common source
map is 600x600 pixels per square inch, with four colors for each pixel, and eight bits for each
color. Compression is used to store the output map while rendering and screening cannot be
completed within the real-time requirement. This phase involves JPEG compression and matrix
transformations and interpolations. Depending on the characteristics of the screened image and
the storage memory available, the compressed image may be either lossless or lossy.
Decompression of the bit-mapped image occurs in real-time as the compressed image is fed to
the print engine. The screening process converts the source pixel map into the appropriate

Last revision: 8/25/03

output format. Since the process must be repeated for all pixels, the number of calculations is
enormous for a high-resolution color image especially in real-time.

2.B.4 SAR Image Processing

Synthetic aperture radar (SAR) signal processing possesses a significant challenge due to its
very large computation and data storage requirements. A sensor transmits pulses and receives
the echoes in a direction approximately perpendicular to the direction of travel. The problem
becomes 2D space-variant convolution using range-Doppler algorithm where all the signals and
coefficients are complex numbers with a precision of at least 16 bits. A heterogeneous
architecture, vector/scalar architecture is proposed and analyzed [MIC96]. The vector processor
(using Sharp LH9124 for FFTs) and the scalar processing unit (using 8 SHARC 21060's
connected in a mesh network) are chosen based on performance, scalability, flexibility,
development cost and repeat cost evaluation criterion. The design is capable of processing SAR
data at about 1/10 of the real-time rate.

2.B.5 Biometric Information Processing

Handwritten signature verification, one of the biometric authentication techniques is cheap,
reliable and, non-intrusive to the person being authorized. A DSP Kernel for online verification
using the TMS32010 with a 200Hz-sampling rate is developed [DDNSZ95]. The authentication
kernel comprises of personalized table and some general-purpose procedures. This verification
method can be part of a variety of entrance monitoring and security systems.

2.C Control and Data acquisition
As expected, PDSP has found numerous applications in modern control and data acquisition
applications as well. Several control applications are implemented using Motorola DSP56000
PDSPs that function as both powerful microcontrollers and as fast digital signal processors. Its
56-bit accumulator (hence the code name 56xxx) provides 8-bit extension registers in
conjunction with saturation arithmetic to allow 256 successive consecutive additions without
the need to check for overflow condition or limit cycles. The output noise power due to round-
off noise of the 24-bit DSP56000/DSP56001 is 65,536 times less than that for 16-bit PDSPs and
microcontrollers. Design examples include a PID (proportion, integration, and derivative)
controller [StSo], and an adaptive controller [Rena].

Another example of DSP system development is the Computer Assisted Dynamic Data
Monitoring and Analysis System (CADDMAS) project developed for the U.S. Airforce and
NASA [SKB98]. It is applied to turbine engine stress testing and analysis. The project makes use
of TMS320C40 for distributed-memory parallel PDSP. An application-specific topology
interconnects 30 different systems with processor counts varying from 4 to 128 processors. More
than 300 sensors are used to measure signals with sampling rate in excess of 100 KHz. Based on
measured signals, the system performs spectral analysis, auto- and cross-correlation, tri-
coherence, etc.

2.D DSP Applications of Hardware Programmable PDSP
There are a variety of FPGA implementation examples of specific DSP functions such as: FIR
(finite impulse response) digital filter [Gosli95], DFT/FFT (Discrete Fourier Transform/Fast

Last revision: 8/25/03

Fourier Transform) processor [Dick96], image/video processing [SVMJ95], wireless CDMA
(Code Division Multiple Access) rake receiver [ShLe2000], and Viterbi decoding [Gosli95].

16-Tap FIR digital filter − A distributed arithmetic (DA) implementation of a 16-tap finite
impulse response digital filter has been reported in [Gosli95]. The DA implementation of the
multiplier uses look up tables (LUTs). Since the product of two n-bit integers will have 22n
different results, the size of the LUT increases exponentially with respect to the word length.
For practical implementation, compromises must be made to trade additional computation time
for smaller number of LUTs.

CORDIC based radar processor − The improvement of FPGA CORDIC arithmetic
implementation is studied further in [Andr98]. The iteration process of CORDIC can be
unrolled so that each processing element always performs the same iteration. Unrolling the
processor results in two significant simplifications. First, shift amounts become fixed and can be
implemented in the wiring. Second, constant values for the angle accumulator are distributed to
each adder in the angle accumulator chain and can be hardwired instead of requiring storage
space. The entire processor is reduced to an array of interconnected adder-subtractors, which is
strictly combinatorial. However, the delay through the resulting circuit can be substantial but
can be shortened using pipelining without additional hardware cost. A 14-bit, 5-iteration
pipelined CORDIC processor that fits in half of an Xilinx XC4013E-2 runs at 52 MHz. This
design is used for high throughput polar to Cartesian coordinate transformations in a radar
target generator.

DFT/FFT − An FPGA based systolic DFT array processor architecture is reported [Dick96]. Each
processing element (PE) contains a CORDIC arithmetic unit, which consists of a series of shift
and add to avoid the requirement for area consuming multiplier. The timing analyzer xdelay
determines the maximum clock frequency to be 15.3 MHz implemented on a Xilinx XC4010
PG191-4 FPGA chip.

Image/video signal processor − In [SVMJ95], the implementation of an FPGA-augmented low-
complexity, video signal processor was reported. This combination of ASIC and FPGA is
flexible enough to implement four common algorithms in real-time. Specifically, for 256×256×8
pictures, this device is able to achieve the following frame rates:

Table 3. Achievable frame rate of four different image processing operations

Algorithms Frames/sec Latency (ms)

7 x 7 Mask 2D Filter 13.3 75.2

8 x 8 Block DCT 55.0 18.2

4 x 4 Block Vector
Quantization at 1/2 bpp

7.4 139.0

One level wavelet transform 35.7 28.0

CDMA rake receiver − A CDMA rake receiver for a real-time underwater data communication
system has been implemented using four Xilinx XC4010 FPGA chips [ShLe 2000] with one
multiplier on each chip. The final design of each multiplier occupies close to 1000 CLBs
(configurable logic blocks) and is running at a clock frequency of 1 MHz.

Last revision: 8/25/03

Viterbi Decoder − Viterbi decoding is used to achieve maximum likelihood decoding of a binary
stream of symbols. Since it involves bit-stream operations, it cannot be efficiently implemented
using word-parallel architecture of general-purpose microprocessors or PDSPs. It has been
reported [Gosli95] that a Xilinx XC4013E-based FPGA implementation of a Viterbi decoder
achieves 2.5 times processing speed (135 ns versus 360 ns) compared to a dual PDSP
implementation of the same algorithm.

3. Performance measures
Comparison of the performance between PDSP and general-purpose microprocessors, between
different PDSPs, as well as between PDSP and dedicated hardware chip sets is a very difficult
task. A number of factors contribute to this difficulty:

1. A set of objective performance metrics is difficult to define for PDSPs. It is well known that with
modern superscalar instruction architecture, the usual metrics such as MIPS (millions
instruction per section), FLOPS (floating-point operations per second) are no longer valid
metrics to gauge the performance of these microprocessors. Some PDSPs also adopt such
architecture. Hence a set of appropriate metrics is difficult to define.

2. PDSPs have fragmented architecture. Unlike general-purpose microprocessors that have
converged largely to similar data format (32 bits, or 64 bits architecture), PDSPs have much
more fragmented architecture in terms of internal or external data format and fixed-point
versus floating-point operations. The external memory interface is varied on platform by
platform basis. This is due to the fact that most PDSPs are designed for embedded
applications, and hence cross-platform compatibility is not of a major concern between
different manufacturers of PDSPs. Furthermore, PDSPs often have specialized hardware to
accelerate a special type of operations. Such specialized hardware makes the comparison
even more difficult.

3. PDSP applications are often hand-programmed with respect to a particular platform. The
performance of cross-platform compilers is still far from realistic. Hence, it is not
meaningful to run the same high-level language benchmark program on different PDSP
platforms.

Some physical parameters of PDSPs are summarized in the following table.

Table 4. Physical performance parameters

Parameters Units

Maximum clock frequency MHz

Power consumption Absolute power, watts (W) , power(W)/MIPS

Execution throughput,
both peak and sustained

MIPS, MOPS (million operations/sec), MACS
(#MAC/sec), MFLOPS

Operation latency Instruction cycles

Memory access Clock cycles

– Bandwidth MB/s (Megabytes per second)

Last revision: 8/25/03

– Latency Clock cycle

– Input/Output No. of ports

Usually peak MIPS, MOPS, MFLOPS, MAC/s, MB/s for particular architecture are just the
product of instructions, operations, floating-point operations, multiply-accumulate operations,
memory access in bytes executed in parallel multiplied by maximum clock frequency
respectively. They can be achieved instantaneously in real applications at certain clock cycle
and somehow misleading. From a user's perspective, the ultimate performance measure is the
"execution time" (wall clock time) of individual benchmark.

Recently, efforts have been made to establish benchmark suites for PDSPs. The proposed
benchmark suites [BJER98, LPM97] can be categorized into kernel and application levels. They
can be classified into general DSP and multimedia/graphic. Since each kernel contributes to
run time of each application at some certain percentage of run time and each application may
contain more than single DSP kernel, conducting benchmark tests at both levels gives more
accurate results than just raw number of some DSP kernels. A number of DSP benchmarks are
summarized below.

Table 5. Examples of DSP Benchmarks

Level Algorithm/Application Names

Kernel

• General FFT/IFFT, FIR, IIR, matrix/vector multiply, Viterbi decoding,
LMS (least mean square) algorithm

• Multimedia/graphic DCT/IDCT, VLC (variable length code) decoding, SAD

Application

• General Radar [BJER98]

• Multimedia/graphic MediaBench [LPM97], G.722, JPEG, Image [BJER98]

4. Modern PDSP Architectures
In this section, several modern PDSP architectures will be surveyed. Based on different
implementation methods, modern PDSPs can be characterized into PDSP chip, PDSP core,
multimedia PDSPs and NSP instruction set. The following aspects of these implementation
approaches are summarized in terms of three general sets of characteristics:

1) program (instruction) execution,

2) datapath, and

3) physical implementation.

Last revision: 8/25/03

Program execution of PDSP is characterized by processing core (how PDSP achieves
parallelism), instruction width (bits), maximum number of instructions issued, address
space of program memory (bits). Its datapath is concerned with number and bit width
of datapath, pipelining depth, native data type either fixed-point or floating-point,
number of ALUs, shifters, multipliers, and bit manipulation units as well as their
corresponding data precision/accuracy, and data/address registers. Finally, physical
characteristics to be compared include maximum clock frequency, typical operating
voltage, feature size and implementation technology, and power consumption.

4.A PDSP Chips
Some of the recent single-chip PDSPs are summarized in the table 6 below:

Table 6 Summary of recent single-chip PDSPs
Family Name DSP16xxx SHARC TMS32054xx TMS32062xx TMS32067xx TriCore

Model number DSP16210 ADSP21160 TMS320VC5421 TMS320C 6203 TMS320C 6701 TC10GP

Company Lucent Analog Device Texas Texas Texas Infineon

Processing core VLIW Multiproc./SIMD Multiprocessor VLIW VLIW Superscalar

Width (bits) 16 & 32 32 16 & 32 256 256 16 & 32

Maximum Issued 1 4 2 8 8 2

Instruction

Address Space (bits) 20 32 - 32 32 32

Number of Datapath 2 2 2 2 2 3

Width of Datapath (bits) 16 32 16 32 32 32

Pipeline Depth 3 3 - 11 17 4

Datapath

Data Type Fixed-point Floating-point Fixed-point Fixed-point Floating-point Fixed-point

ALUs 2 (40b) 2 2(40b) 4 4 1

Shifters 2 2 2(40b) 2 0 -

Multipliers 2 (16bx16b) 2 2(17bx17b) 2 2 2 (16bx16b)

Address Generator 2 2 2x2 ALUs ALUs 1

Functional Units

Bit Manipulation Unit 1 (40b) Shifter 2(40b) Shifter Shifter 1

Hardware loop Y Y Y N N Y Program Control

Nesting levels 2 - 2 2 2 3

Data Registers 8 2x16 2x2 2x16 2x16 16

Width (bits) 40 40 40 32 32 32

Address Registers 21 2x8 2x8 - - 16

On-chip Storage

Width (bits) 20 32 - - - 32

Maximum Clock (MHz) 150 100 - 300 167 66

Operating Voltage (Volts) 3.0 - 1.8 1.5 1.8 2.5

Technology CMOS - CMOS CMOS(15C05) CMOS(18C05) CMOS

Feature Size (micron) - - - 0.15 0.18 0.35

Performance

Power Consumption 294mW@100MHz - 162mW@100MHz - - -

Last revision: 8/25/03

4.A.1 DSP16xxx [Bier97]

The Lucent DSP16xxx achieves ILP from parallel operations encoded in a complex instruction.
These complex instructions are executed at a maximum rate of one instruction per clock cycle.
Overheads due to small loops can be eliminated by embedding up to 31 instructions following
the DO instruction. These embedded instructions can be repeated a specified number of times
without additional overhead. Moreover, high instruction/data I/O bandwidth can be achieved
from a 60-Kword (120-Kbyte) dual-ported on-chip RAM, a dedicated data bus, and a
multiplexed data/instruction bus.

4.A.2 TMS320C54xx [Texas99]

Characterized as a low power PDSP, each TMS320C54xx chip is composed of two independent
processor cores. Each core has a 40-bit ALU including a 40-bit barrel-shifter and two 40-bit
accumulators, a 17-bit × 17-bit parallel multiplier coupled with a 40-bit adder to facilitate single-
cycle MAC operation. The C54 series is optimized for low-power communication applications.
Therefore, it is equipped with a compare, select, and store unit (CSSU) for the add/compare
selection of the Viterbi operator. Loop/branch overhead is eliminated using instructions such as
repeat, block-repeat, and conditional store. Interprocessor communication is carried
out via two internal 8-element first-in-first out (FIFO) register.

4.A.3 TMS320C62x/C67x [Texas99a, Texas99b, Sesh98]

TMS320C62x/C67x is a series of fixed-point/floating-point, VLIW-based PDSPs for high
performance applications. During each clock cycle, a compact instruction is fetched and decoded
(decompressed) to yield a packet of 8 32-bit instructions that resemble those of conventional
VLIW architecture. Compiler performs software pipelining, loop unrolling, “If” conversion to a
predicate execution. Furthermore, a number of special-purpose DSP instructions called intrinsic
functions can be accessed by programmers from high level language such as C. This feature
helps ease the programming task and improve the code performance.

4.A.4 ADSP 21160 SHARC [Analog99]

Analog Device’s ADSP21160 SHARC (Super Harvard ARChitecture) contains two PEs, both
using a 40-bit extended precision floating-point format. Every functional units in each PE is
connected in parallel, and perform single-cycle operations. Even though its name is abbreviated
from Harvard architecture, its program memory can store both instruction and data.
Furthermore, SHARC doubles its data memory bandwidth to allow simultaneous fetch of both
operands.

4.A.5 TriCore [TriCore99]

TriCore TC10GP is a dual-issued superscalar load/store architecture targeted at
control oriented/DSP oriented applications. Even though its instructions are mixed
16/32 bits wide for low code density, its datapath is 32 bits wide to accommodate
high-precision fixed-point and single-precision floating-point numbers.

Last revision: 8/25/03

4.B PDSP CORES
In the table below, we compare the features of four DSP cores reported in the literature:

Table 7 Summary of PDSP cores
Family Name Carmel R.E.A.L. StarCore V850

Model number DSP 10XX - SC140 NA853C

Company Infineon Philips Lucent & Motorola NEC

Processing core VLIW VLIW VLIW RISC

Width (bits) 24 & 48 16 & 32 16 16 & 32

Maximum Issued 1/2 2 6 -

Instruction

Address Space (bits) 23 - 32 26

Number of Datapath 2 2 - -

Width of Datapath (bits) 16 16 16 16

Datapath

Data Type Fixed-point Fixed-point Fixed-point Fixed-point

ALUs 2 (40b) 4 (16b) 4 1 (32b)

Shifters 1(40) 1 (40b) ALU (40b) 1 (32b)

Multipliers 2 (17bx17b) 2 (16x16b) ALU (16bx16b) 1 (32bx32b)

Address Generator 1 2 2 -

Functional Units

Bit Manipulation Unit shifter - ALU Shifter

Data Registers 16+6 8 16 32

Width (bits) 16/40 16 40 32

Address Registers 10 16 24 -

On-chip Storage

Width (bits) 16 - 32 -

Maximum Clock (MHz) 120 85 300 33

Operating Voltage (Volts) 2.5 2.5 1.5 3.3

Technology CMOS - CMOS Titanium-Silicide

Feature Size (micron) 0.25 0.25 0.13 0.35

Performance

Power Consumption 200mW@120MHz - 180mW@300Mhz -

4.B.1 Carmel [Carmel99,EyBi98]

One of the distinguishing features of Carmel is its configurable long instruction words (CLIW)
that are user-defined VLIW like instructions. Each CLIW instruction combines multiple
predefined instructions into a 144-bit long superinstruction as shown below.

CLIW name (ma1, ma2, ma3, ma4) { // CLIW reference line
 MAC1 || ALU1 || MAC2 || ALU2 || MOV1 || MOV2 // CLIW def
}

Programmers can indicate up to four execution units plus two data moves according to the
position of individual instruction within the long CLIW instruction. However, up to four
memory operands can be specified using ma1 through ma4. The assembler stores 48-bit
reference line in program memory and 96-bit definition in a separate CLIW memory (1024 x 96

Last revision: 8/25/03

bits). In addition to CLIW, a specialized hardware is provided to support Viterbi decoding.
Nearly all instructions can use predicated execution by two conditional-execution registers

4.B.2 R.E.A.L. [KLMW98]

Similarly R.E.A.L. PDSP core allows users to specify a VLIW-like set of application specific
instructions (ASI) to exploit full parallelism of datapath. Up to 256 ASI instructions can be
stored in a look-up table. These instructions are activated by a special class of 16 bit instructions
with 8-bit index field. Each ASI instruction is 96 bits wide and of the predicated form below.

Cond (3) || XACU (11) || YACU (10) || MPY1 (3) || MPY0 (3) || ALUs (62) || DSU (2) || BNU (2)
ASI [if(asi_cc)]alu3_op,alu2_op,alu1_op,alu0_op,mult1_op][,mult0_op][,dr_op][,xacu_op][,yacu_op];
ASI [if(asi_cc)]alu32_op, alu10_op [,mult1_op][,mult0_op][,dr_op][,xacu_op][,yacu_op];
ASI [if(asi_cc)]lfsr [,mult1_op][,mult0_op][,xacu_op][,yacu_op];

Each ASI starts with 3-bit condition code followed by 11-bit X ALU opcode, 10-bit Y ALU, 3-bit
Multiplier 1 and 0’s opcodes, 62-bit operands, etc. In addition to user-defined VLIW instruction,
R.E.A.L. allows Application specific eXecution Units (AXU)s to be defined by the customer
which can be placed anywhere in the datapath or address calculation units. It is targeted
application is a GSM baseband signal processor.

4.B.3 StarCore [Star99, WoBi98]

StarCore is a joint development between Lucent and Motorola for wireless software handset
configurable terminals (radios) of the third generation wireless systems. It’s expected to operate
at low voltage down to 0.9 V. A Fetch set (8-word instruction set) is fetched from memory.
Program sequencing (PSEQ) unit detects a portion of this set to be executed in parallel and
dispatched to the appropriate execution unit. This feature is called variable length execution set
(VLES). StarCore achieves maximum parallelism by allowing multiple address generation and
data ALUs to execute multiple operations in a single cycle. StarCore is targeted at speech
coding, synthesis and voice recognition.

4.B.4 V850 [NEC97]

The NEC NA853E is a five-stage pipeline RISC (Reduced Instruction Set Computer)
core suitable for real-time control applications. Not only is instruction set a mixture of
16 and 32 bits wide but also includes intrinsic instructions for high-level language
support to increase the efficiency of object code generated by compiler and to reduce
the program size.

4.C Multimedia PDSPs
Multimedia PDSPs are designed specifically for audio/video applications as well as 2D/3D
graphics. Some of their common characteristics are

1. Multimedia input/output (I/O): This may include ports and codec (coder/decoder) for
video, audio, as well as super VGA graphics signals

Last revision: 8/25/03

2. Multimedia-specific functional units such as YUV to RGB converter for video display,
variable length decoder for digital video decoding, de-scrambler in TriMedia [Philips99a]
and motion estimation unit for digital video coding/compression in Mpact2 [Kala98, Purc98]

3. High speed host computer/memory interfaces such as PCI bus and RAMBUS DRAM
interfaces

4. Real-time kernel or operating system for MPACT and TriMedia respectively

5. Support of floating-point and 2D/3D graphic

Examples of multimedia PDSPs include MPACT, TriMedia, TMS320C8x, and DDMP (Data-
Driven Multimedia Processor) [TMI99]. Their architectural features are summarized in the
following table.

Table 8 Summary of Multimedia PDSPs
Family Name DDMP MPACT TMS320C8x TriMedia

Model number - MPACT2/6000 TMS320C82 TM1300

Company Sharp Chromatic Texas Philips

Processing Core Dataflow VLIW Multiprocessor VLIW

Width (bits) 72 81 32 16 to 224

Maximum Issued 8 2 3 5

Instruction

Address Space (bits) - - 32 32

Width of Datapath (bits) 12 72 32 32 Datapath

Floating-Point Precision NA Both Single Both

ALUs 2 2 3 7

Shifters - 1 3 2

Multipliers 2 ALUs 1 3 2

Functional Units

Address Generators 4 - 3 2

Data Registers 4 Accumulators 512 48 128 On-chip Storage

Width (bits) 24 72 32 32

Maximum Clock (MHz) 120 125 60 166

Operating Voltage (volts) 2.5 - - 2.5

Technology CMOS(4 metal) - CMOS CMOS

Performance

Feature Size (micron) 0.25 0.35 - 0.25

Power Consumption 1.2W@120 MHz - - 3.5W@166MHz

4.D NSP: Native Signal Processing
NSP is referred as the use of extended instruction sets in a general-purpose microprocessors to
process signal processing algorithms. These are special-purpose instructions that often operate
in a different manner than the regular instructions. Specifically, multimedia data formats
usually are rather short (8 or 16 bits) compared to the 32, 64, 128-bit native register length of
modern general-purpose microprocessors. Therefore, up to 8 samples may be packed into a
single word and processed simultaneously to enhance parallelism at the subword level. Most
NSP instructions operate on both integer (fixed-point) and floating-point numbers except Visual
Instruction Set (VIS) [Sun97] which supports only fixed-point number. In general, NSP
instructions can be classified into the following categories [Lee96]:

Last revision: 8/25/03

- Vector arithmetic and logical operations whose results may be vector or scalar.

- Conditional execution using masking operations.

- Memory/cache access control such as cache pre-fetch to particular level of cache,
non-temporal store, etc. as well as masked load/store

- Data alignment and subword rearrangement i.e. permute, shuffle, etc.

Most NSP instruction set architectures exhibit the following features:

1. NSP instructions may share the existing functional units of regular instructions. As such,
some overhead is involved when switching between NSP instructions and regular
instructions. However, some NSP instruction sets have separate, exclusive execution units
as well as register file.

2. Saturation and/or modulo arithmetic instructions are often implemented in hardware to
reduce the overhead of dynamic range checking during execution as illustrated in section
1.B.3.

3. To exploit subword parallelism, manual or human optimization of NSP based programs is
often necessary for demanding applications such as image/video processing, and 2D/3D
graphics.

Common and distinguishing features of available NSPs are summarized alphabetically as
follows.

Table 9. Summary of Native Signal Processing Instruction Sets

Name AltiVec MAX-2 MDMX MMX/3D Now MMX/SIMD VIS

Company Motorola HP MIPS AMD Intel Sun

Instruction set Power PC PA RISC 2.0 MIPS-V IA32 IA32 SPARC V.9

Processor MPC7400 PA RISC R10000 K6-2 Pentium III UltraSparc

Fixed-Point (Integer) 8-bit 16 NA 8 8 8 8

 16-bit 8 4 4 4 4 4

 32-bit 4 NA NA 2 2 2

Floating-point Single
Precision

4 2 2 2 4 Na

Size 32x128b 32x64b 32x64b 8x64b 8x64b 32x64b Fixed-Point Register
File

Shared with Dedicated Integer Reg. FP Reg. Dedicated FP Reg. FP Reg.

Fixed-Point Accumulator Size NA NA 192 NA NA NA

Unsigned
Saturation

Y Y Y Y Y Y Arithmetic

Modulo Y Y Y Y Y Y

Inter-Element Arithmetic Multiply-Acc 4 NA 4 2 2 NA

Fixed-point
MAC Precision

32+=(16x16) - 48+=(16x16) 32+=(16x16) 32+=(16x16) -

Compare Y N Y Y Y Y

Min/Max Y N Y N Y Y

Floating-Point
Multiply-Acc

4 single 2 single 2 single 2 single 4 single N

Last revision: 8/25/03

 Floating-Point
Min/Max

Y N N Y Y N

Sum Y N N Y Y N Intra-Element Arithmetic

Floating-Point
Sum

Y N N Y N N

Pack Y Y Y Y Y Y

Unpack Y Y Y Y Y Y

Permute Y Y Y - N -

Type Conversion

Merge Y Y Y Y Y Y

VREFP CACHE HINT SELECT FEMMS EMMS EDGE

VRSQRTFP DEPOSIT PFRCP DIVPS ARRAY

SPLAT EXTRACT PFRSQRT PREFETCH PSIDT

Special instructions

VSEL SHR PAIR PREFETCH SFENCE BLOCK
TRANSFER

NA: Not Available

Multiply-Acc Precision (bits): acc(bits)+=a(bits) x b(bits)

4.D.1 AltiVec [Moto98, JJAN99]

Motorola's AltiVec features a 128-bit vector execution unit operating concurrently with the
existing integer and floating-point units. There are totally 162 new instructions that can be
classified into four major classes:

Intra-element arithmetic
operations

addition, subtraction, multiply-add, average, minimum,
maximum, conversion between 32-bit integer and floating-
point

Intra-element non-arithmetic
operations

compare, select, logical, shift, and rotate

Inter-element arithmetic
operations

sum of elements within a single vector register to a separate
accumulation register

Intra-element non-arithmetic
operations

wide field shift, pack, unpack, merge/interleave, and permute

AltiVec shows significant amount of efforts to exploit maximum amount of parallelism.
This results in a 32-entry 128-bit wide register file separating from existing integer and
floating-point register files. This is different from other NSP architectures that often
share NSP register file with the existing one. The purpose is to exploit additional
parallelism through super-scalar dispatch of operations to multiple execution units; or
through multithreaded execution unit pipelines. Each instruction can specify up to
three source operands and a single destination operand. Each operand refers to a vector
register. Target applications of AltiVec include multimedia applications as well as high
bandwidth data communication, base station processing, IP telephony gateway, multi-

Last revision: 8/25/03

channel modem, network infrastructure such as Internet router and virtual private
network server

4.D.2 MAX 2.0 [Lee96]

Multimedia Acceleration eXtension (MAX) 2.0 is an extension of HP Precision Architecture
RISC ISA on PA8000 microprocessor with minimal increased die area concern. Both 8-bit and
32-bit subwords are not supported due to insufficient precision and insufficient parallelism
compared to 32-bit single precision floating-point respectively. Although pixels may be input
and output as 8 bits, using 16-bit subword in intermediate calculations is preferred. The
additional hardware to support MAX2.0 is minimal, since integer pipeline already has two
integer ALUs and Shift Merge Units (SMUs) while floating-point pipeline has two FMACs and
two FDIV, FSQRT units. MAX special instructions are field manipulation instructions are

Cache Hint For spatial locality

Extract Selects any field in the source register and place it right-aligned in the target

Deposit Selects a right-aligned field from source and place it anywhere in the target

Shift Pair Concatenates and shift 64-bit or rightmost 32-bit contents of tow reg. into
one result

4.D.3 MDMX [MIPS97]

Based on MIPS' experience of designing Geometry Engine, Reality Engine, Maximum Impact,
Infinite Reality, Nintendo64, O2 and Magic Carpet, the goal of MIPS Digital Media Extension
(MDMX) is devised to improve performance IEEE-compliant DCT accuracy. As a result. MDMX
adds four-and eight-element SIMD capabilities for integer arithmetic through the definition of
these two data types:

Octal Byte 8 unsigned 8-bit integer with 8 unsigned 24-bit accumulator

Quad Half 4 unsigned 16-bit integer with 4 unsigned 48-bit accumulator

Note that both Octal Byte and Quad Half data type share a 192-bit accumulator which permits
accumulation of 2N NxN multiples where N is either 8 or 16 bits according to Octal Byte and
Quad Half respectively. MDMX’s 32 64-bit wide registers and the 8-bit condition code coincide
with the existing floating-point register file similar to the "Paired-single" precision floating-
point data type. Data is moved between shared floating-point register file and memory with
floating-point load/store double word and between floating-point/integer registers. In
addition, MDMX has a unique feature with the vector arithmetic: It is able to operate on specific
element of a subword as an operand or as constant immediate value. However, reduction
instruction (sum across) and sum of absolute difference (SAD) are judiciously left out. In
particular, SAD or L1 norm can be performed as L2 norm without loss of precision using the
192-bit accumulator.

Last revision: 8/25/03

4.D.4 MMX 3D Now! [AMD99, OFW99]

AMD 3D Now! is an Intel's MMX-like multimedia extension and first implemented in AMD K6-
2 processor. Floating-point instructions are augmented to the integer-based MMX instruction
set by introducing a new data type, single precision FP to support 2D and 3D graphics. Similar
to the MMX, applications must determine if the processor supports MMX or not. In addition,
3DNow! is implemented with a separate flat register file in contrast to the stack based floating-
point/MMX register file. Since no physical transfer of data between FP and multimedia unit
register files is required, FEMMS (Faster entry/exit of the MMX or floating-point state) is
included to replace MMX EMMS instruction and to enhance the performance. The register
operations of all 3DNow! Either the register X or Y execution pipelines can execute floating-
point instructions for a maximum issue and execution rate of two operations per cycle
[AMD99]. There are no instruction-decode or operation-issue pairing restrictions. All operations
have an execution latency of 2 cycles and are fully pipelined. As long as two operations do not
fall into the same category, both operations will start execution without delay. The two
categories of additional 21 instructions are

1. PFADD, PFSUB, PFSUBR, PFACC, PFCMPx, PFMIN, PFMAX, PI2FD, PFRCP, and
PFRSQRT

2. PFMUL, PFRCPIT1, PFRSQIT1, and PFRCPIT2.

Normally, all instructions should be properly scheduled so as to avoid delay due to execution
resource contention or structural hazard by taking dependencies and execution latencies into
account.

FEMMS is similar to MMX's EMMS but faster since 3D Now does not share MMX
registers with those of floating-point.

PFRCP scalar floating-point reciprocal approximation

PFRSQRT scalar floating-point reciprocal square root approximation

PREFETCH loads 32 or greater number of bytes either non-temporal or temporal in
the specified cache level

4.D.5 MMX/SIMD [Intel99]

MMX (multimedia extension) is Intel’s first native signal processing extension instruction set.
Subsequently, additional instructions are augmented to the Streaming SIMD Extensions (SSE)
[Intel99] in Pentium III class processors. SIMD supports 4-way parallelism of 32-bit single
precision floating-point for 2D and 3D graphics or 32-bit integer for audio processing. These
new data types are held in a new separate set of eight 128-bit SIMD registers. Unlike MMX
execution, traditional floating-point instructions can be mixed with Streaming SIMD extensions
without the need to execute a special instructions such as EMMS. In addition, SIMD features
explicit SAD instruction and introduces a new operating-system visible state.

EMMS
(Empty

must be used to empty the floating-point tag word at the end of an MMX
routine before calling other routines executing floating-point instructions.

Last revision: 8/25/03

(Empty
MMX State)

routine before calling other routines executing floating-point instructions.

DIVPS divides four pairs of packed, single-precision, floating-point operands.

PREFETCH loads 32 or greater number of bytes either non-temporal or temporal in
the specified cache level

SFENCE
(store fence)

ensures ordering between routines that produce weakly ordered results
and routines that consume this data just like multiprocessor weak
consistency. Non-temporal stores are implicitly weak ordered, no write-
allocate, write combine/collapse so that cache pollution is minimized.

4.D.6 VIS [Sun97, TOVH96]

Sun’s VIS (Visual Instruction Set) is the only NSP reviewed here that does not support
parallelism of floating-point data type. However, the subword data share the floating-point
register file with floating-point number as indicated in Table 10. Some special instructions in
VIS are Array, Pdist, and Block transfer.

Array Facilitates 3D texture mapping and volume rendering by computing
a memory address for data look up based on fixed-point x, y, and z.
Data are laid out in a block fashion so that points which are near one
another have their data stored in nearby memory locations.

Edge Computes a mask used for partial storage at an arbitrarily aligned
start or stop address typically at boundary pixels.

Pdist Computes the sum of absolute value of difference of eight pixel pairs.

Block transfer Transfers 64 bytes of data between memory and registers.

5. Software Programming Tools for PDSP

5.A Software Development Tools for Programming PDSP
Since their introduction more than a decade ago, PDSPs have been incorporated in many high
performance embedded systems such as modems and graphic acceleration cards. A unique
requirement of these applications is that they all demand high quality (machine) code
generation to achieve the highest performance while minimizing the size of the program to
conserve premium on-chip memory space. Often the difference of one or two extra instructions
implies either a real-time processing constraint may be violated, leaving the code generated
useless, or additional memory module may be needed, causing significant cost to overrun.

High-level (programming) languages (HLLs) are attractive to PDSP programmers because they
hide hardware dependent details, and simplify the task of programming. Unlike assembly
codes, HLL programs are readable, maintainable and portable to other processors. In the case of
an object-oriented HLL, such as C++, those programs are also more reliable and reusable. All
these features contribute to reduce development time and cost.

Last revision: 8/25/03

Figure 1. TMS320C6x Software Development Flow [Texas98a]

As an example of typical software development for PDSPs, depicted in Figure 1 is the
TMS320C6x software development flow chart. There are three possible source programs: C
source files, macro source files and linear assembler source files. The latter sources are both at
assembly program level. The assembly optimizer assigns registers and uses loop optimization
to turn linear assembly into highly parallel assembly that takes advantage of software
pipelining. The assembler translates assembly language source files into machine language
object files. The machine language is based on common object file format (COFF). Finally, the
linker combines object files into a single executable object module. As it creates the executable
module, it performs relocation and resolves external references. The linker also accepts
relocatable COFF object files and object libraries as input.

Last revision: 8/25/03

To improve the quality of the code generated, C compilers are always equipped with extensive
optimization options. Many of these compiler optimization strategies [Lucent99] are based on
GNU C Compiler (GCC):

Table 10. Compiler optimization options in DSP16000 series [Lucen99]

 Optimization Performed Targeted Application

-O0 Default operation, no optimization C level debug to verify functional correctness

-O1 Optimize for space Optimize space for control code

-O2 Optimize for space and speed Optimize space and speed for control code

-O Equivalent to –O2 Equivalent to –O2

-O3 -O2 plus loop cache support, some
loop unrolling

Optimize speed for control and loop code

-O4 Aggressive optimization with
software pipeline

Optimize speed and space for control and loop code

-Os Optimize for space Optimize space for control and loop code

Debugger can usually be both simulator and profiler like the C source debugger [Texas98b]. The
C source debugger is an advanced graphic user interface (GUI) to develop, test, and refine ’C6x
C programs and assembly language programs. In addition to that, the ’C6x debugger accepts
executable COFF files as input. It features the following capabilities, that can also be found in
other PDSP development environments:

− multilevel debugging, user can debug both C and assembly language code,

− fully configurable graphical user interface,

− comprehensive data displays, and

− dynamic profiling provides a method for collecting execution statistics and immediate
feedback to identify performance bottlenecks within the code.

Last revision: 8/25/03

5.B On-chip Emulation

Figure 2. Typical Debugging System using EOnCE [Star99]

The presence of the Joint Test Action Group (JTAG) test access module or Enhanced on-chip
emulation (EOnCE) module interface allows the user to insert the PDSP into a target system
while retaining debug control. The EOnCE module is used in PDSP devices to debug
application software in real-time. It is a separate on-chip block that allows non-intrusive
interaction with the core. User can examine the contents of registers, memory or on-chip
peripherals through the JTAG pins. Special circuits and dedicated pins on the core are defined,
to avoid sacrificing user-accessible on-chip resources.

As applications grow in terms of both size and complexity, the EOnCE provides the user with
many features, including:

− breakpoints on data bus values,

− detection of events, which can cause a number of different activities configured by the
user,

− non-destructive access to the core and its peripherals,

− various means of profiling, and

− program tracing buffer

The EOnCE module provides system-level debugging for real-time systems, with the ability to
keep a running log and trace of the execution of tasks and interrupts, and to debug the
operation of real-time operating systems (RTOS).

Last revision: 8/25/03

5.C Optimizing Compiler and code generation for PDSP
The PDSP architecture evolves from ad-hoc heterogeneous towards homogeneous resource like
general-purpose RISC microprocessor. One of the reasons is to make compiler optimization
techniques less difficult. Classical PDSPs' architecture are characterized by

− a small number and nonuniform register sets in which certain registers and memory
blocks are specialized for specific usage,

− highly irregular datapaths to improve code performance and reduce code size,

− very specialized functional units, and

− restricted connectivity and limited addressing to multipartitioned memory.

Several techniques have been proposed based on a simplified architecture of TMS320C2X/5X,
e.g. instruction selection and instruction scheduling [YuHu94], register allocation and
instruction scheduling [LDKTW95].

The success of RISC and its derivatives such as the superscalar architecture and the VLIW
architecture have asserted significant impacts on the evolution of modern PDSP architecture.
However, code density is a central concern in developing embedded DSP systems. This concern
leads to the development of new strategies such as code compaction [Carmel99] and user-
defined long instruction word [KLMW98]. With smaller code space in mind, code compaction
using integer programming [LeMa95] was proposed for applications to PDSPs that offer
instruction-level parallelism such as VLIW. Later on, an integer programming problem
formulation for simultaneous instruction selection, compaction and register allocation were
investigated by [Geboy97]. It can be seen that earlier optimization techniques were focus on the
optimization of basic code blocks. Thus, they can be considered as a local optimization
approach. Recently, the focus has shifted to global optimization issues such as loop unrolling
and software pipelining. In [StLe99], results of implementing a software pipelining using
modulo scheduling algorithm on C'6x VLIW DSP have been reported.

Artificial intelligence (AI) technique such as planning was employed to optimize instruction
selection and scheduling [YuHu94]. With AI, concurrent instruction selection and scheduling
yield code comparable to that of hand-written assembly codes by DSP experts. The instruction
scheduler is a heuristic list based scheduler. Both instruction scheduling and selection involve
node coverage by pattern matching and node evaluation by heuristic search using means-end-
analysis and hierarchical planning. The efficiency is measured in terms of size and execution
time of generated assembly code whose size is up to 3.8 times smaller than that of commercial
compiler.

Simultaneous instruction scheduling and register allocation for minimum cost based on a
branch-and-bound algorithm are reported [LDKTW95]. The framework can be generalized to
accumulator-based machines to optimize accumulator spilling such as the TMS320C40. Their
uses are likely intended to obtain more compact code.

Integer linear programming is shown to be effective in compiler optimization recently in
[LeMa95] and [Geboy97]. The task of local code compaction in VLIW architecture is solved
under a set of linear constraints such as a sequence of register transfers and maximum time
budget. Since some DSP algorithms show more data flow and less control flow behavior
[LeMa95], code compaction exploits parallel register transfers to be scheduled into a single

Last revision: 8/25/03

control step resulting in a lower cycle count to satisfy timing constraint. Of course, resource
conflicts and dependencies as well as encoding restrictions and operations having side effect
must be taken into consideration. Later effort has integrated instruction selection, compaction
and register allocation together [Geboy97]. The targeted PDSP is defined using arc mappings
and later into logical propositions to make it retargetable. These propositions are then translated
into mathematical constraints to form the optimization model using integer linear
programming. Code is generated and optimized for minimum code size, maximum
performance in estimated energy dissipation.

In modern VLIW PDSP, the architecture features homogeneous functional and storage
resources enabling global optimization by compiler. Software pipelining is known as one of the
most popular code scheduling techniques. It exploits the available instruction level parallelism
in different loop iterations. A software-pipelined loop consists of three components:

− A prolog: set up the loop initialization

− A kernel: execute pipelined loop body in steady state

− An epilog: drain the execution of the loop kernel

Modulo scheduling takes an innermost loop body and constructs a new schedule. The new
schedule is equivalent to overlapping loop iterations. The algorithm utilizes data precedence
graph (DPG) and reservation table to construct permissible schedule of the loop body under the
available resource constraints. DPG is a directed graph (possibly cyclic) with nodes and edges
representing operations and data flow dependencies of the original inner loop body. The
resource requirements for an operation are modeled using reservation table. [StLe99] reports
result of software pipelining on a set of 40 loop kernels based on C‘6x architecture. However,
the architectural features that impact performance gain of software pipelining are moderately
sized register file, constraints on code size, and multiple assignment code.

6. DSP System Design Methodologies
Designing modern DSP systems requires more than just programming PDSP or processing
cores. Instead, the system's performance must be the utmost performance criterion. The DSP
system design methodologies are developed at different levels of abstractions. At the system
level, the design scope includes task and data partitioning, and software synthesis/simulation.
At the architectural level, the focus is on architecture and compiler development. At the chip
implementation level, hardware description languages such as VHDL and hardware/software
co-design methodologies are quite important.

6.A Application development with existing hardware/processing core
A software engineering approach is incorporated to assist the development of an application
using a DSP array processor at Raytheon System Corporation [KeOs98]. Three performance
measurements are used to gauge the quality of the design:

- processor throughput rate,

- memory utilization, and

- I/O bandwidth utilization.

Last revision: 8/25/03

A sensitivity analysis of these performance metrics is performed to examine trade-offs of
various design approaches. Factors that affect the processor throughput rate include: the quality
of DSP algorithm formulation, the operation cost in processor cycles, the sustained throughput
rate to peak throughput efficiency, and the expected speedup when it is upgraded to the next
generation of PDSP. Regarding the memory utilization, it has been observed that the size of the
data samples, and the dynamic nature of memory usage patterns are the most two important
factors. The I/O bandwidth utilization, on the other hand, depends on the algorithm as well as
the hardware design. Several design tools used to develop the entire system and their factors
that may degrade the performance during the design process are listed in the table below:

Table 11. DSP System development tools and factors that may degrade performance

Tools Factors that may degrade performance
Code generation – Compiler efficiency

– Quality of generated assembly code
– Size of load image

Instruction level processor simulator – Cycle counts for elementary operation
Cycle-accurate device level VHDL
model

– External memory access time
– Instruction caching effects
– Resource contention between processor and

DMA channels

Rate monotonic analysis (RMA) [LiLa73] is necessary to validate the schedulability of software
architecture. In general, it has been reported that the following lessons have been learned
through this design experience:

− prototype early in the development cycle,

− ignore processor marketing information – actual throughput is highly dependent on the
application profile,

− analyze careful the most frequently executed function - task switching, and

− take inherent interfaces overhead such as interrupt handling, data packing and
unpacking into account in estimating the throughput.

Another example of DSP system development is The Computer Assisted Dynamic Data
Monitoring and Analysis System (CADDMAS) developed for the U.S. Airforce and NASA
[SKB98]. Its details have been described earlier in section 2.c. An adaptive approach was
necessary to allow the structure of the system to adapt to changing external requirement and
sensor availability. This leads to application of a reconfigurable controller called structurally
adaptive signal processing, for process control. Unlike parametric adaptation where topology of
the graph is fixed and coefficients can change over time, a structurally adaptive signal
processing system can change its computational structure on the fly. Therefore, its control
functionality can be maintained even in the face of sensor failures, the performance will be
gracefully degraded but correct control action is still present.

Last revision: 8/25/03

6.B Application-driven design - Fine tuning the processing core
Two reasons contributing to the poor performance of HLL PDSP commercial compilers are first,
that compilers are developed after a target architecture has been established and second, the
inability to exploit DSP-specific architectural features in DSP compiler [SCL94]. The following
application-driven design methodologies are adopted.

− A DSP architecture and its compiler are developed in parallel,

− its dynamic statistics is assessed the impact tradeoffs on performance, and

− an iterative analysis to fine-tune the architecture and compiler.

The PDSP architecture is based on VLIW. As a result an optimizing C compiler is necessary to
exploit static instruction-level parallelism as well as DSP-specific hardware features. Those
hardware features are modulo addressing, low over-head looping, and dual data memory
banks. Meanwhile, instruction set simulator is developed to gather statistics on the run-time
behavior of DSP programs. A suite of DSP benchmarks in terms of kernel and application are
chosen to evaluate the system. The performance success of the compiler is due to the flexibility
of the model VLIW architecture. The statistics indicate the areas of improvement to be fed back
for fine-tuning the architecture. However, its drawback is the high instruction-memory
bandwidth requirements that can be too expensive and impractical to implement.

As another means of DSP architecture development, machine description language (MDL) has
been proposed to achieve rapid prototyping at architectural level. Recently, LISA [PHZM99] is
developed for the generation of bit and cycle accurate models of a PDSP. It includes instruction
set architecture that enables automatic generation of simulators and assemblers. LISA is
composed of resource and operation declarations. Resource declaration represents the storage
objects of the hardware architecture (e.g. registers, memories, pipelines). Declaration
description collects the description of different properties of the system, i.e. instruction set
model, the behavioral model, the timing model, and necessary declarations. LISA supports
cycle-accurate processor models, including constructs to specify pipelines and their
mechanisms. It’s targeting SIMD, VLIW, and superscalar architectures. Direct support for
compiled simulation techniques and strong orientation on C programming language are
contributed in LISA. the Texas Instruments TMS320C6201 DSP, Realized as a real world
example, is modeled in cycle by cycle basis by only one designer and finished within two
months.

6.C Reconfigurable Computing: Hw/Sw codesign for a given application
In the system design process, it has been traditional that decision is made on a subtask-by-
subtask basis to be implemented in either custom hardware or software running on PDSP(s).
On one hand, custom hardware or ASIC can be customized to particular subtask resulting in
relatively fast and efficient implementation. ASIC is physically programmed by patterning
devices (transistors) and metal interconnection prior to fabrication process. Higher throughput
and lower latency can be achieved with more space dedicated to particular functional units. On
the other hand, PDSP is programmed later by software resulting in flexible but relatively slow
and inefficient realization. Temporal or sequential operations can be accomplished by a set of
instructions to program a processor after its fabrication.

Last revision: 8/25/03

Between these two extremes, reconfigurable computing (RC) architecture can be programmed
to perform any specific function by a set of configuration bits. In other words, RC combines
temporal programmability with spatial computation in hardware after it is fabricated at low
overhead. In other words, the hardware/software boundaries can been altered by RC paradigm
[DeWa99].

Also known as 90/10 rule of thumb where 90% of runtime is spent on 10% of the program,
hardware/software partitioning is inspired by the higher percentage of run time of specialized
computation, the more improvement of cost/performance if it is implemented in hardware and
the more specialized computation dominate the application the more closely the specialized
processor should be coupled with host processor. This rule of thumb has been successfully
applied to floating-point processing unit as well as RC.

In heterogeneous system approach, RC is combined with a general-purpose processing
capability of traditional microprocessor. Interface between these two can be either closely or
loosely coupled depending upon its applications. How frequent RC's functionality should be
reconfigured dynamically must be determined based on the performance optimality of
particular hardware/software architecture.

Existing RC architectures are mostly of the form 1D or 2D array of configurable cells
interconnected by programmable links. The array communicates with outside world through
peripheral I/O cells. The architecture can be characterized by its logic capability of each cell at
different granularity.

• Fine-grained configurable cell performs simple logic functions with support of more
complex function such as fast carry chain.

• Coarse-grained configurable cell performs word parallel arithmetic functions such as
addition, multiplication, etc. with support of simple bit-level logic functions.

Either general-purpose computing or DSP application mainly drives the architecture of
configurable cell either fine-grained or coarse-grained. Its configuration or context is stored
locally like SRAM-based FPGA. Its implementation is either FPGA-like or custom design
configurable cell based on current technology and scale of integration. Instead of being off-chip
and loosely coupled to the host processor, RC is going towards an on-chip coprocessor as the
technology advances to SOC.

Table 13 Some Reconfigurable Computing Architectures for DSP Applications

Fine grained CHAMP [PaGu95], DRLE [Nishi99], Pleiades [AbRa96]

Coarse grained MATRIX [MiDe96], MorphoSys [LSLB99], REMARC[MiOl98]

Here are some exiting RC architectures for DSP Applications.

CHAMP [PaGu95] is a system of 8 PEs interconnected in a 32-bit ring topology. Each PE
consists of 2 Xilinx XC4013 FPGAs, dual-port memory, and 32-bit 38 ports reconfigurable
crossbar switch between PEs and memory.

DRLE (Dynamically Reconfigurable Logic Engine) [FFMN99, Nishi99] is capable of real-
time reconfiguration with several layers of configuration tables. An experimental chip is
composed of 4x12 array of configurable cell. Each cell can realize two different logic operations

Last revision: 8/25/03

equivalent to 4-bit input to 1-bit output or 3-bit input to 2-bit output. Up to eight different
configurations can be locally stored in each cell memory. With 0.25 micron CMOS technology,
the chip contains 5.1 million transistors in 10x10 mm2 die-area and consumes 500 mW @ 70
MHz.

MATRIX [MiDe96] is composed of 2D array of identical 8-bit configurable cells overlaid
with a configurable network. Each cell consists of 256x8-bit memory, 8-bit ALU and multiplier,
and reduction control logic. The interconnect network supports 3 ranges of interconnection:
nearest neighbor, bypass of length four, and global line with pipeline register. The configurable
cell area is approximated to 29 million λ2. Its cycle time is 10 ns at 0.5 micron CMOS technology.

MorphoSys [LSLB99] is 2D mesh 8x8 reconfigurable cell array coprocessor. Each cell is
similar to datapath found in conventional processors consisting of ALU/multiplier, shifter, and
4-entry register file. Moreover, bit-level application is also supported. Up to 32 contexts can be
simultaneously resident in context memory. The whole array can be reconfigured in 8 cycles or
80 ns @ 100 MHz.

Pleiades [AbRa96] is proposed as heterogeneous system partitioned by control-flow
computing on microprocessor and data flow computing on RC for future wireless embedded
device. RC array is composed of satellite (configurable) processors and programmable
interconnect to main microprocessor. Data-flow driven computing is implemented using global
asynchronous and local synchronous clocking to reduce overhead. Therefore, operation starts
only when all input data are ready.

7. Conclusion
In this chapter, we briefly surveyed the architecture, application and programming
methodologies of modern programmable digital signal processors (PDSPs). With a bit of stretch
of the definition, we included in this survey the hardware programmable FPGA realization of
DSP algorithms and the special multimedia extension instructions incorporated in general-
purpose microprocessors to facilitate native signal processing. We also offered an overview of
the existing applications of PDSPs. Finally, we summarized current software design
methodologies and briefly mentioned future trends and open research issues.

8. Bibliography
[Analog99] Analog Device Inc., ADSP-21160 SHARC DSP Hardware Reference, 1999

[AbRa96] A. Abnous and J. Rabaey, Ultra-low-power domain-specific multimedia
processors, VLSI Signal Processing, IX, 1996, pp. 461-470

[AEDR91] Alter, J.J., Evins, J.B., Davis, J.L., and Rooney, D.L., A programmable radar signal
processor architecture, Proceedings of the 1991 IEEE National Radar Conference,
1991, pp. 108-111.

[AMD99] 3DNow!™ Technology Manual, AMD Inc., Aug. 1999,
http://www.amd.com/K6/k6docs/pdf/21928.pdf

[Andr98] Ray Andraka, A Survey of CORDIC Algorithms for FPGA based Computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, 1998, pp. 191 - 200.

Last revision: 8/25/03

[Bier97] Bier, J. J., DSP16xxx Targets Communication Apps, Microprocessor Report, vol.
11, no. 12, Dec. 15, 1997.

[BJER98] R. Bhargava, L. K. John, B. L. Evans, R.Radhakrishnan, Evaluating MMX
Technology Using DSP and Multimedia Applications, Proceedings of the IEEE
Symposium on Microarchitecture (MICRO-31), Dallas, Texas, pp. 37-46, Dec.
1998.

[BRWT99] Budagavi, M., Rabiner, W., Webb, J., Talluri, R., Wireless MPEG-4 video on Texas
Instruments DSP chips, Proc. 1999 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Vol. 4 , 1999, pp. 2223 -2226.

[BMMOP96] F. Bonomini, F. De Marco-Zompit, G.A. Mian, A. Odorico, D. Palumbo,
Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP,
September 1996.

[Bork99] Shekhar Borkar, Design challenges of technology scaling, IEEE Micro, July-Aug.,
1999, pp. 23-29

[Carmel99] CARMEL™ Development Chip, Aug. 1999,
http://www.carmeldsp.com/Pdf/CDEV2.2.pdf

[Chish94] Mansoor A. Chishtie, U.S. Digital Cellular Error-Correction Coding Algorithm
Implementation on the TMS320C5x, Texas Instrument, SPRA137, October 1994.

[CJL97] Peter Chou, Hong Jiang, and Z.-P. Liang, Implementing Real-Time Cardiac
Imaging Using theTMS320C3x DSP, July 1997.

[CKITT99] Ngai-Man Cheung, Kawashimea, T., Iwata, Y., Traunnumn, S., Tsay, J., Pawate,
B.I., Software Mpeg-2 Video Decoder On A DSP Enhanced Memory Module,
Multimedia Signal Processing, 1999 IEEE 3rd Workshop on , 1999, pp. 661 -666.

[DaVi98] Daffara, F., Vinson, P., Improved search algorithm for fast acquisition in a DSP-
based GPS receiver, 1998 URSI International Symposium on Signals, Systems,
and Electronics 1998, pp. 310 -314.

[DDNSZ95] H. Dullink, B. van Daalen, J. Nijhuis, L. Spaanenburg, H. Zuidhof, Implementing
a DSP Kernel for Online.

[DeWa99] Andre Dehon and John Wawrzynek, Reconfigurable Computing: What, Why,
and Implications for Design Automation, Proceedings of the 36th ACM/IEEE
conference on Design automation conference , 1999, pp. 610 - 615.

[Dick96] Chris Dick, Computing the Discrete Fourier Transform on FPGA Base Systolic
Arrays, Proceedings of the 1996 ACM fourth international symposium on Field-
programmable gate arrays, 1996, pp. 129 - 135.

[EyBi98] J. Eyre and J. Bier, Camel Enables Customizable DSP, Microprocessor Report,
vol. 12, no. 17, Dec. 28, 1998.

[FFMN99] Fujii, T.; Furuta, K.-i.; Motomura, M.; Nomura, M.; Mizuno, M.; Anjo, K.-i.;
Wakabayashi, K.; Hirota, Y.; Nakazawa, Y.-e.; Ito, H.; Yamashina, M., A
dynamically reconfigurable logic engine with a multi-context/multi-mode
unified-cell architecture, Solid-State Circuits Conference, 1999. Digest of
Technical Papers. ISSCC. 1999 IEEE International , 1999, pp. 364 -365

Last revision: 8/25/03

[GaTh99] S. Ganesh and Vivek Thakur, Print Screening With Advanced DSPs, Texas
Instrument, SPIA004, 1999

[GeBoy97] Catherine H. Geboyts, An Efficient Model for DSP Code Generation:
Performance, Code Size, Estimated Energy, Proceedings of the tenth international
symposium on System synthesis , 1997, pp. 41 - 47.

[Golst96] Jeremiah Golston, Single-Chip H.324 Videoconferencing, IEEE Micro, Aug. 1996,
pp. 21-33.

[Gosli95] Gregory Ray Goslin, A Guide to Using Field Programmable Gate Arrays
(FPGAs) for Application-Specific Digital Signal Processing Performance, Xilinx,
Inc., 1995.

[Gottl94] Albert M. Gottlieb, A DSP-Based Research Prototype Reverse Channel
Transmitter/Receiver for ADSL, 1994 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Volume: iii, 1994 pp. III/253 -III/256
vol.3.

[IGGL99] IKlaus Illgner, Hans-Georg Gruber, Pedro Gelabert, Jie Liang, Youngjun Yoo,
Wissam Rabadi, and Raj Talluri, Programmable DSP Platform for Digital Still
Cameras, Texas Instrument, 1999

[Intel99] Intel® Architecture Optimization Reference Manual, Intel Corp.,
http://developer.intel.com/design/pentiumii/manuals/245127.htm

[JJAN99] Tyler-J, Lent-J, Mather-A, Huy-Nguyen, AltiVec/sup TM/: bringing vector
technology to the PowerPC/sup TM/ processor family, 1999 IEEE International
Performance, Computing and Communications Conference, pp.437-44.

[Kala98] Paul Kalapathy, Hardware-Software Interactions on Mpact, IEEE Micro,
Mar./Apr. 1997, pp. 20.

[KeOs98] David P. Kelly and Robert S. Oshana, Software Performance Engineering a
Digital Signal Processing Application, Proceedings of the first international workshop
on Software and performance, 1998, pp. 42 - 48.

[Knapp95] Steven K. Knapp, Using Programmable Logic to Accelerate DSP Functions,
Xilinx, Inc., 1995, http://www.xilinx.com/appnotes/dspintro.pdf

[KLMW98] P. Kievits, E. Lambers, C. Moerman, and R. Woudsma, R.E.A.L. DSP Technology
for Telecom Baseband, Processing, Philips Semiconductors, http://www-
us.semiconductors.philips.com/acrobat/literature/other/dsp/icspat98_pks.pdf

[Mitch97] Joan L. Mitchell, et al., MPEG video compression standard, Chapman & Hall,
New York, 1997

[KSJ96] Kibe, S.V., Shridhara, K.A., Jayalalitha, M.M., Software-based GIC/GNSS
compatible GPS receiver architecture using TMS320C30 DSP processor, Satellite
Systems for Mobile Communications and Navigation, 1996., Fifth International
Conference on , 1996, pp. 36 -39.

[Lee96] Ruby B. Lee, Subword parallelism with MAX-2, IEEE Micro, Aug. 1996, pp. 51-
59.

Last revision: 8/25/03

[LeMa95] Rainer Leupers and Peter Marwedel, Time-Constrained Code Compaction for
DSPs, Proceedings of the eighth international symposium on System synthesis , 1995,
pp. 54 - 59.

[LeTo98] Dan Ledger and John Tomarakos, Using The Low Cost, High Performance ADSP-
21065L Digital Signal Processor For Digital Audio Applications, Revision 1.0, Analog
Device, Inc., 12/4/98.

[LiLa73] Liu, C.L. and Layland, J.W., Scheduling algorithms for multiprogramming in a
hard-real-time environment, Journal of the Association for Computing
Machinery.vol.20, no.1; Jan. 1973; p.46-61.

[LPM97] Chunho Lee , Miodrag Potkonjak and William H. Mangione-Smith, MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Communications
Systems, Proceedings of the thirtieth annual IEEE/ACM international symposium on
Microarchitecture, 1997, pp. 330 - 335.

[Lucen99] DSP16000 C Compiler, Dec. 1999, Lucent, Inc.,
http://www.lucent.com/micro/dsp16000/pdf/AP99052.pdf

[LSLB99] Guangming-Lu; Singh-H; Ming-Hau-Lee; Bagherzadeh-N; Kurdahi-FJ; Filho-
EMC; Castro-Alves-V, The MorphoSys dynamically reconfigurable system-on-
chip, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware
1999, pp.152-60

[MIC96] Meisl, P.G., Ito, M.R., Cumming, I.G., Parallel processors for synthetic aperture
radar imaging, Proceedings of the 1996 International Conference on Parallel
Processing, 1996. Vol.3. Software., , Volume: 2 , 1996, pp. 124 -131 vol.2.

[MIEB99] Morgan, P.N., Iannuzzelli, R.J., Epstein, F.H., Balaban, R.S., Real-time cardiac
MRI using DSPs, IEEE Transactions on Medical Imaging, Volume: 18 Issue: 7 ,
July 1999, pp. 649 -653.

[MIPS97] MIPS Extension for Digital Media with 3D, MIPS Technologies, Inc. March, 1997,
http://www.mips.com/Documentation/isa5_tech_brf.pdf

[MiDe96] E. Mirsky and A. DeHon, MATRIX: a reconfigurable computing architecture
with configurable instruction distribution and deployable resources, Proc. IEEE
Symposium on FPGAs for Custom Computing Machines, 1996, pp. 157 -166

[Moto98] AltiVec Technology Programming Environments Manual, Rev. 0.1, Nov. 1998,
Motorola, Inc.

[MiOl98] T. Miyamori and U. Olukotun, A quantitative analysis of reconfigurable
coprocessors for multimedia applications, Proc. IEEE Symposium on FPGAs for
Custom Computing Machines 1998, 2-11

[NEC97] NEC Inc., NA853C Microcontroller Overview, 12085e40.pdf

[Nishi99] T. Nishitani, An Approach to a Multimedia Systeom on a Chip, IEEE Workshop
on Signal Processing Systems 1999, pp. 13-21

[OFW99] Stuart Oberman, Greg Favor, and Fred Weber, AMD 3Dnow! Technology:
Architecture and Implementations, IEEE Micro, Apr. 1999, pp. 37-48.

Last revision: 8/25/03

[OwPu97] Owen, R.E.; Purcell, S., An enhanced DSP architecture for the seven multimedia
functions: the Mpact 2 media processor, IEEE Workshop on Signal Processing
Systems - Design and Implementation 1997, Page(s): 76 -85

[PaGu95] R. Patriquin and I. Gurevich, An automated design process for the CHAMP
module, Proceedings of the IEEE National Aerospace and Electronics Conference
1995, pp. 417-424

[PaRo96] B. I. (Raj) Pawate and Peter D. Robinson, Implementation of an HMM-Based,
Speaker-Independent Speech Recognition System on the TMS320C2x and
TMS320C5x, 1996.

[Philips99a] TM1300 Preliminary Data Book, Oct. 1999, http://www-
us.semiconductors.philips.com/trimedia/products/#tm1300,

[PHZM99] Stefan Peesl, Andreas Hoffmannl, Vojin Zivojnovic2, Heinrich Meyrl, LISA -
Machine Description Language for Cycle-Accurate Models of Programmable
DSP Architectures, Proceedings of the 36th ACM/IEEE conference on Design
automation conference, 1999, pp. 933 - 938.

[PWW97] Alex Peleg, Sam Wilkie, and Uri Weiser, Intel MMX for Multimedia PCs,
Communications of the ACM, Jan. 1997, Vol. 40, No. 1, pp. 25-38.

[PeMi93] William B. Pennebaker, Joan L. Mitchell, JPEG still image data compression
standard, Van Nostrand Reinhold, New York , 1993

[Purc98] Steve Purcell, The Impact of Mpact2, IEEE Signal Processing Magazine, Mar.
1998, pp. 102-107.

[Rena] Pascal Renard, Implementation of Adaptive Controllers on the Motorola
DSP56000/DSP56001, Motorola, Inc., APR15.pdf

[Resw96] Etienne J. Resweber, A DSP GMSK Modem for Mobitex and Other Wireless
Infrastructures, Synetcom Digital Incorporated, 1996.

[RoLu98] Alec Robinson, Chuck Lueck, and Jon Rowlands, Audio Decoding on the C54X,
Texas Instrument.

[Sesh98] Nat Seshan, High VelociTi Processing, IEEE Signal Processing Magazine, Mar.
1998, pp. 86-101.

[ShLe2000] Ali M Shankiti, Miriam Leeser, Implementing a RAKE Receiver for Wireless
Communications on an FPGA-based Computer System, Proceedings of the
ACM/SIGDA international symposium on Field programmable gate arrays , 2000, pp.
145 - 151.

[SKB98] Janos Sztipanovits, Gabor Karsai, and Ted Bapty, Self-Adaptive Software for
Signal Processing, Communications of the ACM, May 1998, vol. 41, no.5, pp. 66-
73

[Star99] SC140 DSP Core Reference Manual, Rev. 0, 1999,
http://www.mot.com/pub/SPS/DSP/LIBRARY/STARCORE/sc140dspcore_r
m.pdf

Last revision: 8/25/03

[StLe99] Eric Stotzer, and Ernest Leiss , Modulo Scheduling for the TMS320C6x VLIW
DSP, Proceedings of the ACM SIGPLAN 1999 workshop on Languages, compilers, and
tools for embedded systems , 1999, pp. 28 - 34.

[StSo] Jay Stokes and Guy R. L. Sohie, Implementation of PID Controllers on the
Motorola DSP56000/DSP56001, Motorola, Inc., PR5.pdf

[Sun97] VIS Instruction Set User’s Manual, Jul. 1997,
http://www.sun.com/microelectronics/manuals/805-1394.pdf

[SVMJ95] Brian Schoner, John Villasenor, Steve Molloy and Rajeev Jain, Techniques for
FPGA Implementation of Video Compression Systems, Proceedings of the third
international ACM symposium on Field-programmable gate arrays, 1995, pp. 154 - 159.

[Taipa98] Dana Taipale, Implementing Viterbi Decoders Using the VSL Instruction on DSP
Families DSP56300 and DSP56600, APR40/D (Revision 0, May 1998).

[TexasE97] Caller ID on TMS320C2xx, Texas Instruments Europe, BPRA056, July 1997.

[Texas98a] TMS320C6x Optimizing C Compiler User’s Guide, Texas Instruments, Literature
Number: SPRU187C, February 1998.

[Texas98b] TMS320C6x C Source Debugger User’s Guide, Literature Number: SPRU188D,
January 1998.

[Texas98c] TMS320C62x/C67x, Programmer’s Guide, Literature Number: SPRU198B,
February 1998

[Texas99] TMS320VC5421, Advance Information, Literature Number: SPRS098, December,
1999

[Texas99a] Texas Instrument Inc., TMSC320C6203 Product Preview, 1999, sprs104.pdf

[Texas99b] Texas Instrument Inc., TMSC320C6701 Product Preview, 1999, sprs067c.pdf

[TMI99] H. Terada, S. Miyata, and M. Iwata, DDMP's: Self-Time Super-Pipelined Data
Driven Multimedia Processors, Proceeding of the IEEE, vol. 87, no. 2, Feb. 1999,
pp. 282-296.

[TOVH96] Marc Tremblay, J. Michael O’Connor, Venkatesh Narayan, and Liang He, VIS
Speeds New Media Processing, IEEE Micro, Aug. 1996, pp. 10-20.

[TriCore99] TriCore Architecture Manual, Infineon, Inc. 1999,
http://www.infineon.com/us/micro/tricore/arch/archman.pdf

[WoBi98] O. Wolf and J. Bier, StarCore Launches First Architecture, Microprocessor
Report, vol. 12, no. 14, Oct. 26, 1998.

[YDG98] Susan Yim, Yinong Ding, and E.Bryan George, Implementing Real-Time MIDI
Music Synthesis Algorithms, ABS/OLA, and SMS for the TMS320C32 DSP, Texas
Instrument, January 1998.

[Yiu98] Henry Yiu, Implementing V.32bis Viterbi Decoding on the TMS320C62xx DSP,
Texas Instruments Hong Kong Ltd, SPRA444, April 1998.

Last revision: 8/25/03

[YLZ98] Fengying Yao, Bizhou Li, Min Zhang, A fixed-point DSP implementation for a
low bit rate vocoder, Proceedings. 1998 5th International Conference on Solid-
State and Integrated Circuit Technology, 1998, pp. 365 -368.

[YuHu94] Kin H. Yu and Yu Hen Hu, Efficient Scheduling and Instruction Selection for
Programmable Digital Signal Processors, IEEE Transactions on Signal Processing,
vol. 42, no. 12, Nov. 1994, pp. 3549-52.

